PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 2

Phần câu hỏi bài 10 trang 119, 120 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 23
Câu 24
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 23
Câu 24

Câu 23

Câu 23

Diện tích hình vành khăn giữa hai đường tròn đồng tâm \((O ; R)\) và \((O ; r) (R > r)\) là \(12,5\pi \,c{m^2}\). Tiếp tuyến tại \(M\) của đường tròn \((O ; r)\) cắt đường tròn \((O ; R)\) tại \(A\) và \(B\). Độ dài dây cung \(AB\) của đường tròn lớn tiếp xúc với đường tròn nhỏ là:

(A) \(5:\sqrt 2 \)                       (B) \(5\)

(C) \(5\sqrt 2 \)                           (D) \(10\)

Khoanh tròn vào chữ cái trước kết quả đúng.

Phương pháp giải:

+ Sử dụng công thức tính diện tích hình tròn bán kính \(R\) là \(S = \pi {R^2}\), từ đó suy ra diện tích hình vành khăn

+ Sử dụng quan hệ giữa đường kính và dây cung, định lý Pytago để tính toán.

Lời giải chi tiết:

Diện tích hình tròn \(\left( {O;R} \right)\) là \({S_1} = \pi {R^2}\,\left( {c{m^2}} \right)\) , diện tích hình tròn \(\left( {O;r} \right)\) là \({S_2} = \pi {r^2}\,\left( {c{m^2}} \right)\)

Suy ra diện tích hình vành khăn là \(S = {S_1} - {S_2} = \pi {R^2} - \pi {r^2}\,\,\left( {c{m^2}} \right)\)

Từ bài cho ta có \(S = 12,5\pi \,\left( {c{m^2}} \right) \Rightarrow \pi {R^2} - \pi {r^2}\)\( = 12,5\pi  \Leftrightarrow {R^2} - {r^2} = 12,5\)

Xét đường tròn \(\left( {O;r} \right)\) có \(AB\) là tiếp tuyến tại \(M \Rightarrow OM \bot AB\)

Xét \(\left( {O;R} \right)\) có \(OM \bot AB\) nên \(M\) là trung điểm \(AB\) (quan hệ giữa dây và đường kính), suy ra \(AB = 2MB.\)

Xét tam giác \(OMB\) vuông tại \(M\), theo định lý Pytago ta có \(MB = \sqrt {O{B^2} - O{M^2}}  = \sqrt {{R^2} - {r^2}} \)  mà \({R^2} - {r^2} = 12,5\)(cmt) và \(AB = 2MB\) (cmt) nên \(AB = 2\sqrt {{R^2} - {r^2}}  = 2\sqrt {12,5}  \)\(= 5\sqrt 2 \,cm.\)

Chọn C.

Câu 24

Câu 24

Một hình vuông cạnh a và một đường tròn bán kính r có chu vi bằng nhau. Tỉ số giữa diện tích hình tròn và diện tích hình vuông là:

(A) \(4:\pi \)                       (B) \(\sqrt 2 :\pi \)

(C) \(\pi :\sqrt 2 \)                    (D) \(\pi :4\)

Khoanh tròn vào chữ cái trước kết quả đúng.

Phương pháp giải:

+ Hình vuông cạnh \(a\) có chu vi là \(4.a\) và diện tích là \({a^2}\)

+ Đường tròn bán kính \(r\) có chu vi \(C = 2\pi r\) và diện tích hình tròn là \(S = \pi {r^2}\)

Lời giải chi tiết:

Ta có:

Hình vuông cạnh \(a\) có chu vi là \(4.a\) và diện tích là \({a^2}\) và đường tròn bán kính \(r\) có chu vi \(C = 2\pi r\) và diện tích hình tròn là \(S = \pi {r^2}\) .

Vì theo giả thiết thì hình vuông và đường tròn có chu vi bằng nhau nên \(4a = 2\pi r \Rightarrow \dfrac{r}{a} = \dfrac{2}{\pi }\)

Tỉ số giữa diện tích hình tròn và diện tích hình vuông là \(\dfrac{{\pi {r^2}}}{{{a^2}}} = \pi {\left( {\dfrac{r}{a}} \right)^2} = \pi .\dfrac{4}{{{\pi ^2}}} = \dfrac{4}{\pi } = 4:\pi \) (vì \(\dfrac{r}{a} = \dfrac{2}{\pi }\) (cmt))

Chọn A. 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved