Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Câu 5.
Khoanh tròn vào chữ cái trước kết quả đúng. Tích của đa thức \({x^2} + 2xy + {y^2}\) với đa thức \({x^2} - 2xy + {y^2}\) là
(A) \({x^4} - {y^4}\)
(B) \({x^4} + 2{x^2}{y^2} - {y^4}\)
(C) \({x^4} - 2{x^2}{y^2} - {y^4}\)
(D) \({x^4} - 2{x^2}{y^2} + {y^4}\)
Phương pháp giải:
Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Lời giải chi tiết:
\( \left( {{x^2} + 2xy + {y^2}} \right).\left( {{x^2} - 2xy + {y^2}} \right) \)
\( = {x^2}.\left( {{x^2} - 2xy + {y^2}} \right) \)\(+ 2xy.\left( {{x^2} - 2xy + {y^2}} \right) \)\(+ {y^2}.\left( {{x^2} - 2xy + {y^2}} \right) \)
\( = {x^2}.{x^2} + {x^2}.\left( { - 2xy} \right) \)\(+ {x^2}.{y^2} + 2xy.{x^2} + 2xy.\left( { - 2xy} \right)\)\( + 2xy.{y^2} + {y^2}.{x^2} \)\(+ {y^2}.\left( { - 2xy} \right) + {y^2}.{y^2} \)
\( = {x^4} - 2{x^3}y + {x^2}{y^2} + 2{x^3}y - 4{x^2}{y^2} \)\(+ 2x{y^3} + {x^2}{y^2} - 2x{y^3} + {y^4} \)
\( = {x^4} + \left( {2{x^3}y - 2{x^3}y} \right) \)\(+ \left( {{x^2}{y^2} - 4{x^2}{y^2} + {x^2}{y^2}} \right) \)\(+ \left( {2x{y^3} - 2x{y^3}} \right) + {y^4} \)
\(= {x^4} - 2{x^2}{y^2} + {y^4} \)
Chọn D.
Câu 6.
Khoanh tròn vào chữ cái trước kết quả đúng. Giá trị của biểu thức \(M = \left( {{x^2} - {y^2}} \right)\left( {{x^4} + {x^2}{y^2} + {y^4}} \right)\) khi \(x=1;y=0\) là
(A) \(0\) (B) \(-1\)
(C) \(1\) (D) \(2\)
Phương pháp giải:
Bước 1: Thực hiện nhân đa thức với đa thức.
Bước 2: Rút gọn các đơn thức đồng dạng.
Bước 3: Thay \(x=1;y=0\) vào biểu thức rút gọn để tìm giá trị của \(M\).
Lời giải chi tiết:
\( M = \left( {{x^2} - {y^2}} \right)\left( {{x^4} + {x^2}{y^2} + {y^4}} \right) \)
\( = {x^2}.\left( {{x^4} + {x^2}{y^2} + {y^4}} \right)\)\( - {y^2}.\left( {{x^4} + {x^2}{y^2} + {y^4}} \right)\)
\( = {x^2}.{x^4} + {x^2}.{x^2}{y^2} + {x^2}.{y^4} \)\(+ \left( { - {y^2}} \right).{x^4} + \left( { - {y^2}} \right).{x^2}{y^2} \)\(+ \left( { - {y^2}} \right).{y^4}\)
\( = {x^6} + {x^4}{y^2} + {x^2}{y^4} - {x^4}{y^2}\)\( - {x^2}{y^4} - {y^6} \)
\( = {x^6} + \left( {{x^4}{y^2} - {x^4}{y^2}} \right) \)\(+ \left( {{x^2}{y^4} - {x^2}{y^4}} \right) - {y^6} \)
\( = {x^6} - {y^6} \)
- Thay \(x=1;y=0\) vào biểu thức \(M\) ta được:
\(M = {1^6} - {0^6} = 1 - 0 = 1\)
Chọn C.
Câu 7.
Điền dấu "x" vào ô thích hợp
Phương pháp giải:
- Áp dụng quy tắc: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
- Thực hiện thu gọn các đơn thức đồng dạng sau khi thực hiện nhân đa thức với đa thức.
Lời giải chi tiết:
\(\eqalign{
& +)\,\left( {x - 2} \right)\left( {x + 3} \right) \cr
& = x.\left( {x + 3} \right) - 2\left( {x + 3} \right) \cr
& = x.x + x.3 + \left( { - 2} \right).x + \left( { - 2} \right).3 \cr
& = {x^2} + 3x - 2x - 6 \cr
& = {x^2} + \left( {3x - 2x} \right) - 6 \cr
& = {x^2} + x - 6 \cr} \)
\( +)\,\left( {{x^2} + 2x + 1} \right).\left( {x - 1} \right) \)
\(= {x^2}.\left( {x - 1} \right) + 2x.\left( {x - 1} \right) \)\(+ 1.\left( {x - 1} \right) \)
\( = {x^2}.x + {x^2}.\left( { - 1} \right) + 2x.x \)\(+ 2x.\left( { - 1} \right) + 1.x + 1.\left( { - 1} \right) \)
\( = {x^3} - {x^2} + 2{x^2} \)\(- 2x + x - 1 \)
\( = {x^3} + \left( { - {x^2} + 2{x^2}} \right) \)\(+ \left( { - 2x + x} \right) - 1 \)
\(= {x^3} + {x^2} - x - 1 \)
\(+)\, \left( {{x^2} + xy} \right).\left( {{y^2} - xy} \right)\)
\( = {x^2}.\left( {{y^2} - xy} \right) \)\(+ xy.\left( {{y^2} - xy} \right) \)
\(= {x^2}.{y^2} + {x^2}.\left( { - xy} \right) \)\(+ xy.{y^2} + xy.\left( { - xy} \right) \)
\( = {x^2}{y^2} - {x^3}y \)\(+ x{y^3} - {x^2}{y^2} \)
\( = \left( {{x^2}{y^2} - {x^2}{y^2}} \right) \)\(- {x^3}y + x{y^3} \)
\(= - {x^3}y + x{y^3} \)
\( +)\,\left( {{x^n} + {y^n}} \right)\left( {{x^{2n}} + {y^{2n}} - {x^n}{y^n}} \right) \)
\( = {x^n}\left( {{x^{2n}} + {y^{2n}} - {x^n}{y^n}} \right) \)\(+ {y^n}.\left( {{x^{2n}} + {y^{2n}} - {x^n}{y^n}} \right) \)
\( = {x^n}.{x^{2n}} + {x^n}.{y^{2n}} + {x^n}.\left( { - {x^n}{y^n}} \right) \)\(+ {y^n}.{x^{2n}} + {y^n}.{y^{2n}} + {y^n}.\left( { - {x^n}{y^n}} \right) \)
\( = {x^{3n}} + {x^n}{y^{2n}} - {x^{2n}}{y^n} \)\(+ {x^{2n}}{y^n} + {y^{3n}} - {x^n}{y^{2n}} \)
\( = {x^{3n}} + \left( {{x^n}{y^{2n}} - {x^n}{y^{2n}}} \right) \)\(+ \left( {{x^{2n}}{y^n} - {x^{2n}}{y^n}} \right) + {y^{3n}} \)
\( = {x^{3n}} + {y^{3n}} \)
\(+)\, \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) \)
\( = a.\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) \)\( + b.\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\)\( + c.\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) \)
\(= a.{a^2} + a.{b^2} + a.{c^2} + a.\left( { - ab} \right) \)\(+ a.\left( { - bc} \right) + a.\left( { - ca} \right) \)\( + b.{a^2} + b.{b^2} + b.{c^2} + b.\left( { - ab} \right) \)\(+ b.\left( { - bc} \right) + b.\left( { - ca} \right) \)\( + c.{a^2} + c.{b^2} + c.{c^2} + c.\left( { - ab} \right) \)\(+ c.\left( { - bc} \right) + c.\left( { - ca} \right) \)
\( = {a^3} + a{b^2} + a{c^2} - {a^2}b \)\(- abc - {a^2}c + {a^2}b + {b^3} \)\( + b{c^2} - a{b^2} - {b^2}c - abc + {a^2}c \)\(+ {b^2}c + {c^3} - abc - b{c^2} - a{c^2} \)
\(= {a^3} + {b^3} + {c^3} + \left( {a{b^2} - a{b^2}} \right) \)\(+ \left( {a{c^2} - a{c^2}} \right) + \left( {{a^2}b - {a^2}b} \right) \)\(+ \left( { - abc - abc - abc} \right) + \left( {{a^2}c - {a^2}c} \right) \)\(+ \left( {b{c^2} - b{c^2}} \right) + \left( {{b^2}c - {b^2}c} \right) \)
\(= {a^3} + {b^3} + {c^3} - 3abc \)
Ta có bảng sau:
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Khoa học tự nhiên lớp 8
Unit 7. Teens
PHẦN 1. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Từ giữa thế kỉ XVI đến năm 1917)
Bài 1. Vị trí địa lí, địa hình và khoáng sản
Phần 3: Vật sống
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8