Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Câu 13.
Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{4{x^3}y}}\) và \(\dfrac{2}{{6{x^2}{y^2}}}\) ta được mẫu thức chung là biểu thức :
\(\begin{array}{l}(A)\,\,10\left( {{x^3}y + {x^2}{y^2}} \right)\\(B)\,\,10{x^2}y\\(C)\,\,12{x^3}{y^2}\\(D)\,\,6{x^3}y\end{array}\)
Phương pháp giải:
- Phân tích mẫu thức của các phân thức đã cho thành nhân tử.
- Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau:
+ Nhân tử bằng số của mẫu thức chung là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã học. (Nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số của mẫu thức chung là BCNN của chúng).
+ Với mỗi cơ số của luỹ thừa có mặt trong các mẫu thức ta chọn luỹ thừa với số mũ cao nhất.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}4{x^3}y = {2^2}{x^3}y\\6{x^2}{y^2} = 2.3{x^2}{y^2}\\MTC = {2^2}.3.{x^3}{y^2} = 12{x^3}{y^2}\end{array}\)
Chọn C.
Câu 14.
Khi quy đồng mẫu thức \(\dfrac{1}{{4{x^2}y + 4{x^2}z}}\) và \(\dfrac{3}{{10x{{\left( {y + z} \right)}^2}}}\) ta được mẫu thức chung là biểu thức
\(\begin{array}{l}(A)\,\,14\left( {{x^3}{y^2} + {x^3}{z^2}} \right)\\(B)\,\,20{x^2}{\left( {y + z} \right)^2}\\(C)\,\,2x\left( {x + y} \right)\\(D)\,\,20{x^2}\left( {{y^2} + {z^2}} \right)\end{array}\)
Phương pháp giải:
- Phân tích mẫu thức của các phân thức đã cho thành nhân tử.
- Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau:
+ Nhân tử bằng số của mẫu thức chung là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã học. (Nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số của mẫu thức chung là BCNN của chúng).
+ Với mỗi cơ số của luỹ thừa có mặt trong các mẫu thức ta chọn luỹ thừa với số mũ cao nhất.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}+)\,4{x^2}y + 4{x^2}z = 4{x^2}\left( {y + z} \right) \\= {2^2}.{x^2}\left( {y + z} \right)\\+)\,10x{\left( {y + z} \right)^2} = 2.5.x{\left( {y + z} \right)^2}\\ \Rightarrow MTC = {2^2}.5.{x^2}.{\left( {y + z} \right)^2}\\= 20{x^2}{\left( {y + z} \right)^2}\end{array}\)
Chọn B.
Câu 15.
Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{4x}}\) và \(\dfrac{2}{{6y}}\) ta được những phân thức
\((A)\,\,\dfrac{1}{{4x + 6y}}\) và \(\dfrac{2}{{4x + 6y}}\)
\((B)\,\,\dfrac{{6y}}{{4x + 6y}}\) và \(\dfrac{{8x}}{{4x + 6y}}\)
\((C)\,\,\dfrac{y}{{12xy}}\) và \(\dfrac{{2x}}{{12xy}}\)
\((D)\,\,\dfrac{{3y}}{{12xy}}\) và \(\dfrac{{4x}}{{12xy}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}4x = {2^2}.x\\6y = 2.3.y\\ \Rightarrow MTC = {2^2}.3.x.y = 12xy\end{array}\)
Nhân tử phụ của mẫu thức thứ nhất là \(3y\)
Nhân tử phụ của mẫu thức thứ hai là \(2x\)
Quy đồng mẫu thức ta được:
\(\begin{array}{l}\dfrac{1}{{4x}} = \dfrac{{1.3y}}{{4x.3y}} = \dfrac{{3y}}{{12xy}}\\\dfrac{2}{{6y}} = \dfrac{{2.2x}}{{6y.2x}} = \dfrac{{4x}}{{12xy}}\end{array}\)
Chọn D.
Câu 16.
Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{12{x^3}\left( {x + y} \right)}}\) và \(\dfrac{2}{{9{x^2}{{\left( {x + y} \right)}^2}}}\)
Ta được những phân thức
\((A)\,\,\dfrac{1}{{21\left( {x + y} \right)\left( {2x + y} \right)}}\) và \(\dfrac{2}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\)
\((B)\,\,\dfrac{{3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\) và \(\dfrac{{8x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\)
\((C)\,\,\dfrac{{1 + 9\left( {x + y} \right)}}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\) và \(\dfrac{{2 + 4x}}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\)
\((D)\,\,\dfrac{{1 + 3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\) và \(\dfrac{{2 + 4x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}12{x^3}\left( {x + y} \right) = {2^2}.3.{x^3}\left( {x + y} \right)\\9{x^2}{\left( {x + y} \right)^2} = {3^2}.{x^2}{\left( {x + y} \right)^2}\\ \Rightarrow MTC = {2^2}{.3^2}.{x^3}.{\left( {x + y} \right)^2} \\= 36{x^3}{\left( {x + y} \right)^2}\end{array}\)
- Nhân tử phụ của mẫu thức thứ nhất là: \(3\left( {x + y} \right)\)
- Nhân tử phụ của mẫu thức thứ hai là: \(4x\)
\(\begin{array}{l}\dfrac{1}{{12{x^3}\left( {x + y} \right)}} = \dfrac{{3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\\\dfrac{2}{{9{x^2}{{\left( {x + y} \right)}^2}}} = \dfrac{{2.4x}}{{9{x^2}{{\left( {x + y} \right)}^2}.4x}} \\= \dfrac{{8x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\end{array}\)
Chọn B.
Chương V. Điện
Chủ đề 2. Thể hiện trách nhiệm với bản thân và mọi người
Unit 11: Science and technology
PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2
Tải 10 đề kiểm tra 15 phút - Chương 2 - Hóa học 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8