Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Câu 21.
Phân thức đối của phân thức \(\dfrac{A}{B}\) là biểu thức
\(\begin{array}{l}(A)\,\,\dfrac{A}{{ - B}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,\dfrac{{ - A}}{{ - B}}\\(C)\,\, - \dfrac{{ - A}}{B}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\, - \dfrac{A}{{ - B}}\end{array}\)
Phương pháp giải:
Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng \(0\).
Phân thức đối của phân thức \( \dfrac{A}{B}\) được kí hiệu là \( -\dfrac{A}{B}\)
Ta có: \( -\dfrac{A}{B} =\dfrac{-A}{B}\) và \( -\dfrac{-A}{B}=\dfrac{A}{B}\)
Lời giải chi tiết:
Phân thức đối của phân thức \(\dfrac{A}{B}\) là \( \dfrac{A}{-B}\)
Chọn A.
Câu 22.
Phân thức đối của phân thức \(\dfrac{{ - A}}{B}\) là biểu thức
\(\begin{array}{l}(A)\,\, - \dfrac{A}{B}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,\dfrac{A}{B}\\(C)\,\,\dfrac{A}{{ - B}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\, - \dfrac{{ - A}}{{ - B}}\end{array}\)
Phương pháp giải:
Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng \(0\).
Phân thức đối của phân thức \( \dfrac{A}{B}\) được kí hiệu là \( -\dfrac{A}{B}\)
Ta có: \( -\dfrac{A}{B} =\dfrac{-A}{B}\) và \( -\dfrac{-A}{B}=\dfrac{A}{B}\)
Lời giải chi tiết:
Phân thức đối của phân thức \(\dfrac{{ - A}}{B}\) là \( - \dfrac{{ - A}}{B} = \dfrac{A}{B}\)
Chọn B.
Câu 23.
Hiệu \(\dfrac{A}{B} - \dfrac{C}{D}\) bằng biểu thức
\(\begin{array}{l}(A)\,\,\dfrac{A}{B} + \left( {\dfrac{{ - C}}{{ - D}}} \right)\\(B)\,\,\dfrac{A}{B} - \left( {\dfrac{{ - C}}{D}} \right)\\(C)\,\,\dfrac{A}{B} + \left( {\dfrac{C}{{ - D}}} \right)\\(D)\,\,\dfrac{C}{D} + \left( {\dfrac{{ - A}}{B}} \right)\end{array}\)
Phương pháp giải:
Quy tắc: Muốn trừ phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\), ta cộng \( \dfrac{A}{B}\) với phân thức đối của \( \dfrac{C}{D}\)
Vậy: \( \dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left( { - \dfrac{C}{D}} \right)\).
Lời giải chi tiết:
\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \dfrac{{ - C}}{D} = \dfrac{A}{B} + \dfrac{C}{{ - D}}\)
Chọn C.
Câu 24.
Cho các biểu thức sau:
\(\begin{array}{l}\dfrac{{ - 9}}{{3 - x}} + \dfrac{{ - 3x}}{{3 - x}};\\\dfrac{{3x}}{{x - 2}} + \dfrac{6}{{x - 2}};\\\dfrac{{3x}}{{x - 2}} + \dfrac{{ - 6}}{{x - 2}};\\\dfrac{{3x}}{{3 - x}} + \dfrac{{ - 9}}{{3 - x}}.\end{array}\)
Hãy chọn ra những biểu thức thích hợp để điền vào chỗ trống trong hai đẳng thức sau:
\(\begin{array}{l}\dfrac{{3x}}{{x - 2}} - \dfrac{6}{{x - 2}} = ...\\\dfrac{{ - 9}}{{3 - x}} - \dfrac{{3x}}{{x - 3}} = ...\end{array}\)
Phương pháp giải:
Quy tắc: Muốn trừ phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\), ta cộng \( \dfrac{A}{B}\) với phân thức đối của \( \dfrac{C}{D}\)
Vậy: \( \dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left( { - \dfrac{C}{D}} \right)\).
Lời giải chi tiết:
\(\begin{array}{l}\dfrac{{3x}}{{x - 2}} - \dfrac{6}{{x - 2}} = \dfrac{{3x}}{{x - 2}} + \dfrac{{ - 6}}{{x - 2}}\\\dfrac{{ - 9}}{{3 - x}} - \dfrac{{3x}}{{x - 3}} = \dfrac{{ - 9}}{{3 - x}} + \dfrac{{3x}}{{ - \left( {x - 3} \right)}} \\= \dfrac{{ - 9}}{{3 - x}} + \dfrac{{3x}}{{3 - x}} = \dfrac{{3x}}{{3 - x}} + \dfrac{{ - 9}}{{3 - x}}\end{array}\)
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Toán lớp 8
Bài 1: Tự hào về truyền thống dân tộc Việt Nam
Chương VIII. Sinh vật và môi trường
Đề cương ôn tập lý thuyết & bài tập học kỳ 1
Đề kiểm tra giữa học kì 1
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8