PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1

Phần câu hỏi bài 8 trang 25 Vở bài tập toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 24.
Câu 25.
Câu 26.
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 24.
Câu 25.
Câu 26.

Câu 24.

Khoanh tròn vào chữ cái trước kết quả đúng. Phân tích đa thức \({x^2} - {y^2} + 5x - 5y\)  ta được kết quả

\(\begin{array}{l}(A)\,\,\left( {x - y} \right)\left( {x + y + 5} \right)\\(B)\,\,\left( {x + y} \right)\left( {x - y - 5} \right)\\(C)\,\,\left( {x - y} \right)\left( {x + y - 5} \right)\\(D)\,\,\left( {x - y} \right)\left( {x - y - 5} \right)\end{array}\) 

Phương pháp giải:

- Nhóm hạng tử thứ nhất và hạng tử thứ hai; hạng tử thứ ba và hạng tử thứ tư.

- Áp dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\) 

Lời giải chi tiết:

\(\begin{array}{l}{x^2} - {y^2} + 5x - 5y\\ = \left( {{x^2} - {y^2}} \right) + \left( {5x - 5y} \right)\\ = \left( {x - y} \right)\left( {x + y} \right) + 5\left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y + 5} \right)\end{array}\) 

Chọn A.

Câu 25.

Khoanh tròn vào chữ cái trước kết quả đúng.

Cho \(2{x^2} - 4x + 2 = \left( {x - 1} \right)\left( {x + 5} \right)\)  thì ta được:

\(\begin{array}{l}(A)\,\,x = 1\,\,\,\,(B)\,\,x =  - 1\\(C)\,\,x = 7\,\,\,\,\,\,(D)\,\,x = 1\,\,\text{hoặc}\,\,x = 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\end{array}\) 

Phương pháp giải:

- Đưa các đẳng thức về dạng \(A(x) = 0\)

- Phân tích đa thức ở vế trái thành nhân tử. 

- Áp dụng hằng đẳng thức: \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

- Áp dụng tính chất đa thức bằng 0 nếu nó chứa nhân tử bằng 0.

\(B\left( x \right)C\left( x \right) = 0 \Rightarrow \left[ \begin{array}{l}B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\)

Lời giải chi tiết:

\(\begin{array}{l}2{x^2} - 4x + 2 = \left( {x - 1} \right)\left( {x + 5} \right)\\2\left( {{x^2} - 2x + 1} \right) - \left( {x - 1} \right)\left( {x + 5} \right) = 0\\2{\left( {x - 1} \right)^2} - \left( {x - 1} \right)\left( {x + 5} \right) = 0\\\left( {x - 1} \right)\left[ {2\left( {x - 1} \right) - \left( {x + 5} \right)} \right] = 0\\\left( {x - 1} \right)\left( {2x - 2 - x - 5} \right) = 0\\\left( {x - 1} \right)\left( {x - 7} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 7 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 1\\x = 7\end{array} \right.\end{array}\)

Chọn D. 

Câu 26.

Nối một đa thức ở cột bên trái với một đa thức ở cột phải để được đẳng thức đúng.

 Phương pháp giải:

- Phân tích các đa thức ở cột bên trái bằng phương pháp dùng hằng đẳng thức hoặc nhóm, sau đó so sánh kết quả phân tích với các đa thức ở cột bên phải.

- Áp dụng hằng đẳng thức: 

\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\\{A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\end{array}\)

Lời giải chi tiết:

\(\begin{array}{l}1)\,\,{\left( {a + b} \right)^3} - 8 = {\left( {a + b} \right)^3} - {2^3}\\ = \left( {a + b - 2} \right)\left[ {{{\left( {a + b} \right)}^2} + 2\left( {a + b} \right) + {2^2}} \right]\\ = \left( {a + b - 2} \right)\left( {{a^2} + 2ab + {b^2} + 2a + 2b + 4} \right)\end{array}\) 

\(\begin{array}{l}2)\,\,{a^2} - {b^2} + 6a + 9\\ = \left( {{a^2} + 6a + 9} \right) - {b^2}\\ = \left( {a + 2.a.3 + {3^2}} \right) - {b^2}\\ = {\left( {a + 3} \right)^2} - {b^2}\\ = \left( {a + 3 + b} \right)\left( {a + 3 - b} \right)\end{array}\)

\(\begin{array}{l}3)\,\,{a^5} + {a^4}x - ay - xy\\ = \left( {{a^5} + {a^4}x} \right) - \left( {ay + xy} \right)\\ = {a^4}\left( {a + x} \right) - y\left( {a + x} \right)\\ = \left( {a + x} \right)\left( {{a^4} - y} \right)\end{array}\)

\(\begin{array}{l}4)\,\,{a^4} - 3{a^3} - 27a + 81\\ = \left( {{a^4} - 27a} \right) - \left( {3{a^3} - 81} \right)\\ = a\left( {{a^3} - 27} \right) - 3\left( {{a^3} - 27} \right)\\ = \left( {{a^3} - 27} \right)\left( {a - 3} \right)\\ = \left( {{a^3} - {3^3}} \right)\left( {a - 3} \right)\\ = \left( {a - 3} \right)\left( {{a^2} + 3a + 9} \right)\left( {a - 3} \right)\\ = {\left( {a - 3} \right)^2}\left( {{a^2} + 3a + 9} \right)\end{array}\)

Ta nối như sau:

1 – d; 2 – a; 3 – b; 4 – c.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved