Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Câu 27.
Điền dấu “x” vào ô thích hợp:
Phương pháp giải:
Phân tích đa thức vế trái rồi so sánh với đa thức ở vế phải hoặc thực hiện biến đổi đa thức ở vế phải rồi so sánh với đa thức ở vế trái.
- Áp dụng hằng đẳng thức:
\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\end{array}\)
- Quy tắc nhân đa thức với đa thức: Ta lấy mỗi hạng tử của đa thức này nhân với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau.
Giải chi tiết:
\(\begin{array}{l}{x^2} - 5x + 6\\ = {x^2} - 2x - 3x + 6\\ = x\left( {x - 2} \right) - 3\left( {x - 2} \right)\\ = \left( {x - 2} \right)\left( {x - 3} \right)\end{array}\)
\(\begin{array}{l}{x^3} - {x^2} + {y^3} - {y^2} - 2xy\\ = \left( {{x^3} + {y^3}} \right) - \left( {{x^2} + 2xy + {y^2}} \right)\\ = \left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right) - {\left( {x + y} \right)^2}\\ = \left( {x + y} \right)\left[ {{x^2} - xy + {y^2} - \left( {x + y} \right)} \right]\\ = \left( {{x^2} - xy + {y^2} - x - y} \right)\left( {x + y} \right)\end{array}\)
\(\left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)\)\( = {x^3} + x{y^2} + x{z^2} - {x^2}y - xyz - {x^2}z\)\(+ {x^2}y + {y^3} + y{z^2} - x{y^2} - {y^2}z - xyz\)\(+ {x^2}z + {y^2}z + {z^3} - xyz - y{z^2} - x{z^2}\)\( = {x^3} + {y^3} + {z^3} - 3xyz\)
Câu 28.
Điền vào chỗ … để được đẳng thức đúng
\(\begin{array}{l}1)\,\,2{x^2} + 3x - 5 = \left( {x - ...} \right)\left( {2x + 5} \right);\\2)\,\,{x^5} - x = \left( {x - 1} \right)x\left( {x + 1} \right)...\\3)\,\,{x^3} + 3x - 4 = \left( {...} \right)\left( {{x^2} + x + 4} \right).\end{array}\)
Phương pháp giải:
Sử dụng phương pháp tách, nhóm, hằng đẳng thức, đặt nhân tử chung để phân tích đa thức thành nhân tử.
Giải chi tiết:
\(\begin{array}{l}1)\,\,2{x^2} + 3x - 5\\ = 2{x^2} - 2x + 5x - 5\\ = \left( {2{x^2} - 2x} \right) + \left( {5x - 5} \right)\\ = 2x\left( {x - 1} \right) + 5\left( {x - 1} \right)\\ = \left( {x - 1} \right)\left( {2x + 5} \right);\\2)\,\,{x^5} - x\\ = x\left( {{x^4} - 1} \right) = x\left[ {{{\left( {{x^2}} \right)}^2} - 1} \right]\\ = x\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)\\ = x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)\\ = \left( {x - 1} \right)x\left( {x + 1} \right)\left( {{x^2} + 1} \right)\\3)\,\,{x^3} + 3x - 4\\ = {x^3} - 1 + 3x - 3\\ = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) + 3\left( {x - 1} \right)\\ = \left( {x - 1} \right)\left( {{x^2} + x + 1 + 3} \right)\\ = \left( {x - 1} \right)\left( {{x^2} + x + 4} \right).\end{array}\)
Câu 29.
Khoanh tròn vào chữ cái trước kết quả đúng. Phân tích đa thức \({x^4} - 5{x^2} + 4\) ta được kết quả
\(\begin{array}{l}(A)\,\,\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)\\(B)\,\left( {x - 2} \right)\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)\\(C)\,\,\left( {x - 2} \right)\left( {x + 1} \right)\left( {x + 2} \right)\\(D)\,\,\left( {x - 2} \right)\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 3} \right)\end{array}\)
Phương pháp giải:
Sử dụng phương pháp tách, nhóm, hằng đẳng thức, đặt nhân tử chung để phân tích đa thức thành nhân tử.
Giải chi tiết:
\(\begin{array}{l}{x^4} - 5{x^2} + 4\\ = {x^4} - {x^2} - 4{x^2} + 4\\ = {x^2}\left( {{x^2} - 1} \right) - 4\left( {{x^2} - 1} \right)\\ = \left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\\ = \left( {x - 1} \right)\left( {x + 1} \right)\left( {x - 2} \right)\left( {x + 2} \right)\end{array}\)
Chọn B.
Chương II. Một số hợp chất thông dụng
Bài 4. Thực hành: Phân tích hoàn lưu gió mùa ở châu Á
Chủ đề 4. Sống hòa hợp trong gia đình
PHẦN 1. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Từ giữa thế kỉ XVI đến năm 1917)
Bài 14: Phòng, chống nhiễm HIV/AIDS
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8