Đề bài
Cho phương trình bậc hai \(2{x^2} - 3x - 5 = 0\)
a) Xác định các hệ số a, b, c và tính các tỉ số \( - \dfrac{b}{a}\) và \(\dfrac{c}{a}\)
b) Giải phương trình.
c) Tính tổng và tích hai nghiệm của phương trình. So sánh tổng và tích tìm được với các tỉ số \( - \dfrac{b}{a}\) và \(\dfrac{c}{a}\) ở trên.
Lời giải chi tiết
a) Ta có: \(a = 2;b = - 3;c = - 5;\)\(\,\, - \dfrac{b}{a} = \dfrac{3}{2};\,\,\dfrac{c}{a} = - \dfrac{5}{2}\)
b) \(a = 2;b = - 3;c = - 5;\)\(\;\Delta = {\left( { - 3} \right)^2} + 4.2.5 = 49 > 0;\sqrt \Delta = 7\)
Vậy phương trình đã cho có 2 nghiệm phân biệt: \({x_1} = \dfrac{{3 + 7}}{4} = \dfrac{5}{2};{x_2} = \dfrac{{3 - 7}}{4} = - 1\)
c) Tổng hai nghiệm của phương trình là: \({x_1} + {x_2} = \dfrac{5}{2} - 1 = \dfrac{3}{2}\)
Tích hai nghiệm của phương trình là: \({x_1}.{x_2} = - \dfrac{5}{2}\)
Ta có: \({x_1} + {x_2} = - \dfrac{b}{a};{x_1}.{x_2} = \dfrac{c}{a}\)
Đề thi vào 10 môn Toán Sóc Trăng
CHƯƠNG II. MỘT SỐ VẤN ĐỀ XÃ HỘI CỦA TIN HỌC
CHƯƠNG 1. CÁC LOẠI HỢP CHẤT VÔ CƠ
Tải 30 đề kiểm tra giữa kì 1 Toán 9
ĐỊA LÍ KINH TẾ