CHƯƠNG IV. HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

Hoạt động 1 trang 53 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho phương trình bậc hai \(2{x^2} - 3x - 5 = 0\)

a) Xác định các hệ số a, b, c và tính các tỉ số \( - \dfrac{b}{a}\) và \(\dfrac{c}{a}\)

b) Giải phương trình.

c) Tính tổng và tích hai nghiệm của phương trình. So sánh tổng và tích tìm được với các tỉ số \( - \dfrac{b}{a}\) và \(\dfrac{c}{a}\) ở trên.

Lời giải chi tiết

a) Ta có: \(a = 2;b =  - 3;c =  - 5;\)\(\,\, - \dfrac{b}{a} = \dfrac{3}{2};\,\,\dfrac{c}{a} =  - \dfrac{5}{2}\)

b) \(a = 2;b =  - 3;c =  - 5;\)\(\;\Delta  = {\left( { - 3} \right)^2} + 4.2.5 = 49 > 0;\sqrt \Delta   = 7\)

Vậy phương trình đã cho có 2 nghiệm phân biệt: \({x_1} = \dfrac{{3 + 7}}{4} = \dfrac{5}{2};{x_2} = \dfrac{{3 - 7}}{4} =  - 1\)

c) Tổng hai nghiệm của phương trình là: \({x_1} + {x_2} = \dfrac{5}{2} - 1 = \dfrac{3}{2}\)

Tích hai nghiệm của phương trình là: \({x_1}.{x_2} =  - \dfrac{5}{2}\)

Ta có: \({x_1} + {x_2} =  - \dfrac{b}{a};{x_1}.{x_2} = \dfrac{c}{a}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved