Hoạt động 6 trang 126 Tài liệu dạy – học Toán 9 tập 1

Đề bài

Cho đường tròn (O ; 10 cm) và hai dây AB = 8 cm, CD = 6 cm. Từ O hạ OH và OK theo thứ tự vuông góc với AB và CD.

Hãy tính OH, OK và cho biết đoạn nào dài hơn.

Lời giải chi tiết

 

Ta có \(OH \bot AB,\,\,OK \bot CD \Rightarrow \) H, K theo thứ tự là trung điểm của \(AB,\,\,CD\).

\( \Rightarrow HB = \dfrac{1}{2}AB = \dfrac{1}{2}.8 = 4\,\,\left( {cm} \right),\)\(\,\,KD = \dfrac{1}{2}CD = \dfrac{1}{2}.6 = 3\,\,\left( {cm} \right)\)

Áp dụng định lí Pytago trong tam giác vuông \(OHB\) có:

\(O{H^2} = O{B^2} - H{B^2} = {10^2} - {4^2} = 84 \)

\(\Leftrightarrow OH = \sqrt {84}  = 2\sqrt {21} \,\,\left( {cm} \right)\)

Áp dụng định lí Pytago trong tam giác vuông \(OKD\) có:

\(O{K^2} = O{D^2} - K{D^2} = {10^2} - {3^2} = 91\)

\(\Leftrightarrow OK = \sqrt {91} \,\,\left( {cm} \right)\)

Do \(91 > 84 \Rightarrow \sqrt {91}  > \sqrt {84}  \Rightarrow OK > OH\).

Vậy \(OK > OH\). 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved