1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền
2. Hệ thức giữa ba cạnh của tam giác vuông
3. Hệ thức giữa đường cao ứng với cạnh huyền và hình chiếu của hai cạnh góc vuông trên cạnh huyền
4. Hệ thức diện tích
5. Hệ thức giữa đường cao và hai cạnh góc vuông
Bài tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Luyện tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
1. Khái niệm tỉ số lượng giác của một góc nhọn
2. Liên hệ giữa các tỉ số lượng giác của một góc
3. Tỉ số lượng giác của hai góc phụ nhau
4. Tỉ số lượng giác của hai góc đặc biệt
5. Tìm tỉ số lượng giác của các góc đặc biệt
Bài tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Luyện tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Đề bài
Cho tam giác đều ABC có cạnh bằng 2 dm. Gọi D là trung điểm BC. Tính độ dài AD, CD rồi dùng kết quả đó để tính tỉ số lượng giác của các góc \({30^0}\) và \({60^0}\).
Lời giải chi tiết
Ta có D là trung điểm BC \( \Rightarrow CD = \dfrac{1}{2}BC = 1\,dm\)
Áp dụng định lý Pythagore vào tam giác ADC vuông tại D có:
\(A{D^2} + C{D^2} = A{C^2}\\ \Rightarrow AD = \sqrt {A{C^2} - C{D^2}} = \sqrt 3 \,\,dm\)
Xét tam giác ADC vuông tại D có:
\(\begin{array}{l}\sin {30^o} = \cos {60^o} = \dfrac{{CD}}{{AC}} = \dfrac{1}{2}\,\,;\\\cos {30^o} = \sin {60^o} = \dfrac{{AD}}{{AC}} = \dfrac{{\sqrt 3 }}{2}\\\tan {30^o} = \cot {60^o} = \dfrac{{CD}}{{AD}} = \dfrac{{\sqrt 3 }}{3}\,\,;\\\cot {30^o} = \tan {60^o} = \dfrac{{AD}}{{CD}} = \sqrt 3 \end{array}\)
ĐỊA LÍ DÂN CƯ
Đề thi vào 10 môn Toán Thái Bình
Đề thi vào 10 môn Văn Tuyên Quang
Đề thi vào 10 môn Toán Đà Nẵng
Đề thi vào 10 môn Toán Bắc Giang