Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
1. Các kiến thức cần nhớ
Nhắc lại công thức nghiệm của phương trình bậc hai
Xét phương trình bậc hai $a{x^2} + bx + c = 0$ ${\rm{ }} (a \ne 0)$
và biệt thức $\Delta = {b^2} - 4ac.$
Trường hợp 1. Nếu $\Delta < 0$ thì phương trình vô nghiệm.
Trường hợp 2. Nếu $\Delta = 0$ thì phương trình có nghiệm kép: ${x_1} = {x_2} = - \dfrac{b}{{2a}}$
Trường hợp 3. Nếu $\Delta > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} = \dfrac{{-b + \sqrt {\Delta } }}{2a}$, ${x_{2}} = \dfrac{{-b - \sqrt {\Delta } }}{2a}$
Công thức nghiệm thu gọn của phương trình bậc hai
Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = {b^{'2}} - ac.$
Trường hợp 1. Nếu $\Delta ' < 0$ thì phương trình vô nghiệm.
Trường hợp 2. Nếu $\Delta ' = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} = - \dfrac{{b'}}{a}$
Trường hợp 3. Nếu $\Delta ' > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} = \dfrac{{-b' - \sqrt {\Delta '} }}{a}$
Chú ý
- Khi \(a > 0\) và phương trình \(a{x^2} + bx + c = 0\) vô nghiệm thì biểu thức \(a{x^2} + bx + c > 0\) với mọi giá trị của \(x\).
- Nếu phương trình \(a{x^2} + bx + c = 0\) có \(a < 0\) thì nên đổi dấu hai vế của phương trình để có \(a > 0\), khi đó dể giải hơn.
- Đối với phương trình bậc hai khuyết \(a{x^2} + bx = 0\), \(a{x^2} + c = 0\) nên dùng phép giải trực tiếp sẽ nhanh hơn.
2. Các dạng toán thường gặp
Dạng 1: Giải phương trình bậc hai một ẩn bằng cách sử dụng công thức nghiệm thu gọn
Phương pháp:
Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = b{'^2} - ac.$
Trường hợp 1. Nếu $\Delta ' < 0$ thì phương trình vô nghiệm.
Trường hợp 2. Nếu $\Delta ' = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} = - \dfrac{{b'}}{a}$
Trường hợp 3. Nếu $\Delta ' > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} =\dfrac{{-b' - \sqrt {\Delta '} }}{a}$
Dạng 2: Xác định số nghiệm của phương trình bậc hai
Phương pháp:
Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0$ với $b = 2b'$
+) Phương trình có nghiệm kép \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' = 0\end{array} \right.\)
+) Phương trình có hai nghiệm phân biệt\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right.\)
+) Phương trình vô nghiệm \( \Leftrightarrow \left[ \begin{array}{l}a = 0,b' = 0,c \ne 0\\a \ne 0,\Delta ' < 0\end{array} \right.\)
Dạng 3: Giải và biện luận phương trình bậc hai (dùng một trong hai công thức: công thức nghiệm và công thức nghiệm thu gọn)
Phương pháp:
* Giải và biện luận phương trình bậc hai theo tham số \(m\) là tìm tập nghiệm của phương trình tùy theo sự thay đổi của \(m\).
Xét phương trình bậc hai \(a{x^2} + bx + c = 0\) với \(\Delta = {b^2} - 4ac\) ( hoặc \(\Delta ' = {\left( {b'} \right)^2} - ac\) )
Trường hợp 1. Nếu \(\Delta < 0\) hoặc \(\left( {\Delta ' < 0} \right)\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta = 0\) hoặc \(\left( {\Delta ' = 0} \right)\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a}\).
Trường hợp 3. Nếu \(\Delta > 0\) hoặc \(\left( {\Delta ' > 0} \right)\) thì phương trình có hai nghiệm phân biệt ${x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} = \dfrac{{-b' - \sqrt {\Delta '} }}{a}$.
Đề thi vào 10 môn Văn Đồng Nai
Đề thi vào 10 môn Toán Cà Mau
Bài 8
Đề thi vào 10 môn Văn Hải Dương
Bài 26