Lý thuyết Công thức nghiệm thu gọn

1. Các kiến thức cần nhớ

Nhắc lại công thức nghiệm của phương trình bậc hai

Xét phương trình bậc hai $a{x^2} + bx + c = 0$ ${\rm{  }}  (a \ne 0)$

và biệt thức $\Delta  = {b^2} - 4ac.$

Trường hợp 1. Nếu $\Delta  < 0$ thì phương trình vô nghiệm.

Trường hợp 2. Nếu $\Delta  = 0$ thì phương trình có nghiệm kép: ${x_1} = {x_2} =  - \dfrac{b}{{2a}}$

Trường hợp 3. Nếu $\Delta  > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} =  \dfrac{{-b + \sqrt {\Delta } }}{2a}$, ${x_{2}} =  \dfrac{{-b - \sqrt {\Delta } }}{2a}$

Công thức nghiệm thu gọn của phương trình bậc hai

Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = {b^{'2}} - ac.$

Trường hợp 1. Nếu $\Delta ' < 0$ thì phương trình vô nghiệm.

Trường hợp 2. Nếu $\Delta ' = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} =  - \dfrac{{b'}}{a}$

Trường hợp 3. Nếu $\Delta ' > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} =  \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} =   \dfrac{{-b' - \sqrt {\Delta '} }}{a}$

Chú ý

- Khi \(a > 0\) và phương trình \(a{x^2} + bx + c = 0\) vô nghiệm thì biểu thức \(a{x^2} + bx + c > 0\) với mọi giá trị của \(x\).

- Nếu phương trình \(a{x^2} + bx + c = 0\) có \(a < 0\) thì nên đổi dấu hai vế của phương trình để có \(a > 0\), khi đó dể giải hơn.

- Đối với phương trình bậc hai khuyết \(a{x^2} + bx = 0\), \(a{x^2} + c = 0\) nên dùng phép giải trực tiếp sẽ nhanh hơn. 

2. Các dạng toán thường gặp

Dạng 1: Giải phương trình bậc hai một ẩn bằng cách sử dụng công thức nghiệm thu gọn

Phương pháp:

Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = b{'^2} - ac.$

Trường hợp 1. Nếu $\Delta ' < 0$ thì phương trình vô nghiệm.

Trường hợp 2. Nếu $\Delta ' = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} =  - \dfrac{{b'}}{a}$

Trường hợp 3. Nếu $\Delta ' > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} =\dfrac{{-b' - \sqrt {\Delta '} }}{a}$

Dạng 2: Xác định số nghiệm của phương trình bậc hai

Phương pháp:

Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0$ với $b = 2b'$

+) Phương trình có nghiệm kép \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' = 0\end{array} \right.\)

+) Phương trình có hai nghiệm phân biệt\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right.\)

+) Phương trình vô nghiệm \( \Leftrightarrow \left[ \begin{array}{l}a = 0,b' = 0,c \ne 0\\a \ne 0,\Delta ' < 0\end{array} \right.\)

Dạng 3: Giải và biện luận phương trình bậc hai (dùng một trong hai công thức: công thức nghiệm và công thức nghiệm thu gọn)

Phương pháp:

* Giải và biện luận phương trình bậc hai theo tham số \(m\) là tìm tập nghiệm của phương trình tùy theo sự thay đổi của \(m\).

Xét phương trình bậc hai \(a{x^2} + bx + c = 0\) với \(\Delta  = {b^2} - 4ac\) ( hoặc \(\Delta ' = {\left( {b'} \right)^2} - ac\) )

Trường hợp 1. Nếu \(\Delta  < 0\) hoặc \(\left( {\Delta ' < 0} \right)\) thì phương trình vô nghiệm.

Trường hợp 2. Nếu \(\Delta  = 0\) hoặc \(\left( {\Delta ' = 0} \right)\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a}\).

Trường hợp 3. Nếu \(\Delta  > 0\) hoặc \(\left( {\Delta ' > 0} \right)\) thì phương trình có hai nghiệm phân biệt ${x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} = \dfrac{{-b' - \sqrt {\Delta '} }}{a}$.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi