Cho hàm số \(y = f(x)\) có đồ thị \((C)\).
1. Tiệm cận đứng
Đường thẳng \(x=a\) là đường tiệm cận đứng của \((C)\) nếu ít nhất một trong bốn điều kiện sau được thoả mãn:
\(\eqalign{
& \mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \cr
& \mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty \cr
& \mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty \cr
& \mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \cr} \)
2. Tiệm cận ngang
Đường thẳng \(y = b\) là tiệm cận ngang của \((C)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f(x) = b \cr
& \mathop {\lim }\limits_{x \to - \infty } f(x) = b \cr} \)
Chú ý
- Đồ thị hàm đa thức không có tiệm cận đứng và tiệm cận ngang, do đó trong các bài toán khảo sát và vẽ đồ thị hàm đa thức, ta không cần tìm các tiệm cận này.
3. Tiệm cận xiên:
Đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) được gọi là tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\\\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\end{array} \right.\) , trong đó:
\(\left\{ \begin{array}{l}a = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{f\left( x \right)}}{x}\\b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}a = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{f\left( x \right)}}{x}\\b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\end{array} \right.\)
Chỉ có khái niệm “Tiệm cận của đồ thị hàm số”, KHÔNG có “Tiệm cận của hàm số”.
CHƯƠNG V. SÓNG ÁNH SÁNG
Đề kiểm tra 15 phút - Chương 3 – Hóa học 12
PHẦN GIẢI TÍCH - TOÁN 12
Unit 13: The 22nd Sea Game - Đông Nam Á Vận Hội Lần Thứ 22
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Hóa học lớp 12