Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Ôn tập chương I. Tứ giác
Đề kiểm tra 15 phút - Chương 1
Đề kiểm tra 45 phút (1 tiết) - Chương 1
1. Kiến thức cần nhớ
Đường trung bình của tam giác
Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
Định lý 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
Định lý 2: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Ví dụ:
+ \(\Delta ABC\) có \(D\) là trung điểm của \(AB\) , \(E\) là trung điểm của \(AC\) nên \(DE\) là đường trung bình của tam giác \(ABC\) \( \Rightarrow DE{\rm{//}}BC;\,DE = \dfrac{1}{2}BC.\)
+ Nếu \(\left\{ \begin{array}{l}DA = DB\\DE{\rm{//}}BC\end{array} \right. \Rightarrow EC = EA\) .
Đường trung bình của hình thang
Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.
Định lí 3: Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.
Định lí 4: Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.
Ví dụ:
+ Hình thang \(ABCD\) (hình vẽ) có \(E\) là trung điểm \(AD\) , \(F\) là trung điểm của \(BC\) nên \(EF\) là đường trung bình của hình thang \( \Rightarrow \left\{ \begin{array}{l}EF{\rm{//}}DC\\EF = \dfrac{{AB + DC}}{2}\end{array} \right.\)
2. Các dạng toán thường gặp
Dạng 1: Chứng minh các hệ thức về cạnh và góc. Tính các cạnh và góc.
Phương pháp:
Sử dụng tính chất đường trung bình của tam giác và hình thang.
+ Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
+ Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.
+ Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
+ Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.
Dạng 2: Chứng minh một cạnh là đường trung bình của tam giác, hình thang.
Phương pháp:
Sử dụng định nghĩa đường trung bình của tam giác và hình thang.
+ Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
+ Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.
Đề thi, đề kiểm tra Toán lớp 8
Unit 8. Traditions of ethnic groups in Vietnam
Unit 10: Communication in the future
Bài 11: Lao động tự giác và sáng tạo
Kiến thức chung
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8