PHẦN GIẢI TÍCH - TOÁN 12

Lý thuyết giá trị lớn nhất và nhỏ nhất của hàm số

 

 

1. Định nghĩa

Cho hàm số \(y = f(x)\) xác định trên tập \(D.\)

- Số \(M\) là giá trị lớn nhất (GTLN) của hàm số \(f\) trên \(D \)

\(⇔\left\{ \matrix{
f(x) \le M,\forall x \in D \hfill \cr 
\exists \, {x_0} \in D\text{ sao cho }f({x_0}) = M \hfill \cr} \right.\)

Kí hiệu : \(M=\underset{D}{\max} f(x).\)

- Số \(m\) là giá trị nhỏ nhất (GTNN) của hàm số \(f\) trên \(D\)

\(⇔\left\{ \matrix{
f(x) \ge m,\forall x \in D \hfill \cr 
\exists \, {x_0} \in D\text{ sao cho }f({x_0}) = m \hfill \cr} \right.\)

Kí hiệu: \(m=\underset{D}{\min} f(x).\)

2. Cách tính giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

Định lí

Hàm số liên tục trên một đoạn thì có GTLN và GTNN trên đoạn đó.

Quy tắc tìm GTLN, GTNN của hàm số \(y = f(x)\) liên tục trên đoạn [a ; b]

- Tìm các điểm \(x_i ∈ (a ; b)(i = 1, 2, . . . , n)\) mà tại đó \(f'(x_i) = 0\) hoặc \(f'(x_i)\) không xác định.

- Tính \(f(a), f(b), f(x_i) (i = 1, 2, . . . , n) .\)

- Khi đó: \(\underset{[a;b]}{\max} f(x)=\max \left \{ f(a); f(b); f(x_{i}) \right \}\);

\(\underset{[a;b]}{\min} f(x)=\min \left \{ f(a); f(b); f(x_{i}) \right \}\)

3. Chú ý

Để tìm GTLN, GTNN của hàm số \(y=f(x)\) xác định trên tập hợp \(D\), ta có thể khảo sát sự biến thiên của hàm số trên \(D,\) rồi căn cứ vào bảng biến thiên của hàm số mà kết luận về GTLN và GTNN của hàm số.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved