PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Lý thuyết liên hệ giữa phép chia và phép khai phương

1. Định lí 

Với số \(a\) không âm và số \(b\) dương ta có: \( \sqrt{\dfrac{a}{b}} = \dfrac{\sqrt{a}}{\sqrt{b}}\).

2. Quy tắc khai phương một thương 

Muốn khai phương một thương \( \dfrac{a}{b}\), trong đó a không âm, b dương, ta có thể khai phương lần lượt a và b rồi lấy kết quả thứ nhất chia cho kết quả thứ 2.

3. Quy tắc chia các căn bậc hai

Muốn chia các căn bậc hai của số a không âm cho căn bậc hai của số b dương ta có thể chia a cho cho b rồi khai phương kết quả đó.

Chú ý:  Một cách tổng quát, với biểu thức \(A\) không âm và biểu thức \(B\) dương ta có \(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt A}{\sqrt B}\)

4. Các dạng toán cơ bản

Dạng 1: Tính giá trị biểu thức

Sử dụng: Với biểu thức \(A\) không âm và biểu thức \(B\) dương ta có \(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt A}{\sqrt B}\)

Ví dụ: \(\sqrt {\dfrac{{25}}{{49}}}  = \dfrac{{\sqrt {25} }}{{\sqrt {49} }} = \dfrac{5}{7}\)

Dạng 2: Rút gọn biểu thức

Sử dụng: Với biểu thức \(A\) không âm và biểu thức \(B\) dương ta có \(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt A}{\sqrt B}\)

Ví dụ: Rút gọn \(\dfrac{{\sqrt {27{y^3}} }}{{\sqrt {3y} }}\) với \(y> 0\)

Ta có: \(\dfrac{{\sqrt {27{y^3}} }}{{\sqrt {3y} }} = \sqrt {\dfrac{{27{y^3}}}{{3y}}} \)\( = \sqrt {9{y^2}}  = \sqrt {{{\left( {3y} \right)}^2}} \)\( = \left| {3y} \right| = 3y\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved