Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
1. Căn bậc hai số học
+) Căn bậc hai của một số không âm là số \(x\) sao cho \({x^2} = a.\)
+) Số dương \(a\) có đúng hai căn bậc hai là \(\sqrt a \) (và gọi là căn bậc hai số học của \(a\)) và \( - \sqrt a .\)
+) Số \(0\) có đúng một căn bậc hai là chính số \(0\) và nó cũng là căn bậc hai số học của \(0.\)
+) Với hai số không âm \(a,b,\) ta có \(a < b \Leftrightarrow \sqrt a < \sqrt b .\)
2. Căn thức bậc hai
+) Với \(A\) là một biểu thức đại số, ta gọi \(\sqrt A \) là căn thức bậc hai của \(A\).
+) \(\sqrt A \) xác định (hay có nghĩa) khi \(A\) lấy giá trị không âm tức là $ A \ge 0.$
\(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\begin{array}{*{20}{c}}{}&{{\rm{khi }}A \ge 0}\end{array}\\ - A\begin{array}{*{20}{c}}{}&{{\rm{khi }}\, A < 0}\end{array}\end{array} \right..\)
3. Liên hệ giữa phép nhân, phép chia với phép khai phương
Khai phương một tích: \(\sqrt {A.B} = \sqrt A .\sqrt B {\rm{ }}(A \ge 0,B \ge 0)\)
Nhân các căn bậc hai: \(\sqrt A .\sqrt B = \sqrt {A.B} {\rm{ }}(A \ge 0,B \ge 0)\)
Khai phương một thương: \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt A }}{{\sqrt B }}{\rm{ }}(A \ge 0,B > 0)\)
Chia căn bậc hai: \(\dfrac{{\sqrt A }}{{\sqrt B }} = \sqrt {\dfrac{A}{B}} {\rm{ }}\left( {A \ge 0,B > 0} \right)\)
4. Biến đổi đơn giản biểu thức chứa căn bậc hai
Với \(A \ge 0\) và \(B \ge 0\) thì \(\sqrt {{A^2}B} = A\sqrt B \)
Với \(A < 0\) và \(B \ge 0\) thì \(\sqrt {{A^2}B} = - A\sqrt B \)
Với \(A \ge 0\) và \(B \ge 0\) thì \(A\sqrt B = \sqrt {{A^2}B} \)
Với \(A < 0\) và \(B \ge 0\) thì \(A\sqrt B = - \sqrt {{A^2}B} \)
Với \(A.B \ge 0\) và \(B \ne 0\) thì \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}\)
Với \(B > 0\) thì \(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\)
Với \(A > 0\) và \(A \ne {B^2}\) thì \(\dfrac{C}{{\sqrt A \pm B}} = \dfrac{{C(\sqrt A \mp B)}}{{A - {B^2}}}\)
Bài 15
Đề thi vào 10 môn Toán Bình Định
PHẦN HÌNH HỌC - TOÁN 9 TẬP 1
Đề kiểm tra giữa kì 2
Chương 3. Phi kim. Sơ lược về bảng tuần hoàn các nguyên tố hóa học