Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và phép chia các đa thức
Đề kiểm tra 15 phút - Chương 1 - Đại số 8
Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Đại số 8
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Đề kiểm tra 15 phút – Chương 2 – Đại số 8
Đề kiểm tra 45 phút (1 tiết ) – Chương 2 – Đại số 8
1. Các kiến thức cần nhớ
Ta sử dụng các hằng đẳng thức đáng nhớ đã học để thực hiện phép phân tích đa thức thành nhân tử.
Các hằng đẳng thức đáng nhớ:
$1$ . \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
$2$ . \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
$3$ . \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
$4$ . \({\left( {A + B} \right)^3} \)\(= {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)
$5$ . \({\left( {A - B} \right)^3} \)\(= {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)
$6$ . \({A^3} + {B^3} = \left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right)\)
$7$ . \({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right)\)
Ví dụ: \({\left( {x + 5} \right)^2} - 16 = {\left( {x + 5} \right)^2} - {4^2} \)\(= \left( {x + 5 + 4} \right)\left( {x + 5 - 4} \right) \)\(= \left( {x + 9} \right)\left( {x + 1} \right)\)
Chú ý: Khi áp dụng phương pháp dùng hằng đẳng thức để phân tích đa thức thành nhân tử, ta cần lưu ý:
- Trước tiên nhận xét xem các hạng tử của đa thức có chứa nhân tử chung không ? Nếu có thì áp dụng phương pháp đặt thành nhân tử chung.
- Nếu không thì xét xem có thể áp dụng hằng đẳng thức đáng nhớ để phân tích thành nhân tử hay không ?
Chú ý: Đôi khi phải dùng quy tắc dấu ngoặc sau đó mới áp dụng được hằng đẳng thức.
Ví dụ:
\(\eqalign{
& - 4{x^2} - 12x - 9 \cr
& = - (4{x^2} + 12x + 9) \cr
& = - \left[ {{{\left( {2x} \right)}^2} + 2.2x.3 + {3^2}} \right] \cr
& = - {\left( {2x + 3} \right)^2} \cr} \)
2. Các dạng toán thường gặp
Dạng 1: Phân tích đa thức thành nhân tử
Phương pháp:
Ta sử dụng các hằng đẳng thức đã học để phân tích đa thức đã cho thành nhân tử.
Dạng 2: Tìm \({\bf{x}}\)
Phương pháp:
Ta sử dụng các hằng đẳng thức đã học để phân tích đa thức đã cho thành nhân tử.
Từ đó đưa về dạng tìm \(x\) thường gặp như \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)
Dạng 3: Tính giá trị biểu thức thỏa mãn điều kiện cho trước
Phương pháp:
Ta biến đổi biểu thức đã cho để có thể sử dụng được điều kiện ở giả thiết.
Từ đó tính giá trị biểu thức.
Chủ đề VII. Sinh học cơ thể
Bài 2. Tôn trọng sự đa dạng của các dân tộc
Unit 11: Buy One, Get One Free!
Bài 8: Tôn trọng và học hỏi các dân tộc khác
Tải 10 đề kiểm tra 15 phút - Học kì 2
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8