Bài 1. Tập hợp. Phần tử của tập hợp
Bài 6. Chia hết và chia có dư. Tính chất chia hết của một tổng
Bài 13. Bội chung. Bội chung nhỏ nhất
Bài 2. Tập hợp các số tự nhiên. Ghi số tự nhiên
Bài 8. Dấu hiệu chia hết cho 3, cho 9
Bài 3. Các phép tính trong tập hợp số tự nhiên
Bài 5. Thứ tự thực hiện các phép tính
Bài 14. Hoạt động thực hành và trải nghiệm
Bài 7. Dấu hiệu chia hết cho 2, cho 5
Bài 12. Ước chung. Ước chung lớn nhất
Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
Bài 9. Ước và bội
Bài tập cuối chương 1
Bài 4. Lũy thừa với số mũ tự nhiên
Bài 11. Hoạt động thực hành và trải nghiệm
I. Nhân hai số nguyên
1.Nhân hai số nguyên khác dấu
Để nhân hai số nguyên khác dấu, ta làm như sau:
Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại
Bước 2: Tính tích của hai số nguyên dương nhận được ở Bước 1
Bước 3: Thêm dấu “-” trước kết quả nhận được ở Bước 2, ta có kết quả cần tìm.
Nhận xét: Tích của hai số nguyên khác dấu là số nguyên âm.
Chú ý:
Cho hai số nguyên dương \(a\) và \(b\), ta có:
\(\left( { + a} \right).\left( { - b} \right) = - a.b\)
\(\left( { - a} \right).\left( { + b} \right) = - a.b\)
Ví dụ:
a) \(( - 20).5 = - \left( {20.5} \right) = - 100.\)
b) \(15.\left( { - 10} \right) = - \left( {15.10} \right) = - 150.\)
c) \(20.\left( { + 50} \right) + 4.\left( { - {\rm{ }}40} \right) = 1000 - (4.40) = 1000 - 160 = 840. \)
2.Nhân hai số nguyên cùng dấu
Để nhân hai số nguyên âm, ta làm như sau:
Để nhân hai số nguyên âm, ta làm như sau:
Bước 1: Bỏ dấu “-” trước mỗi số
Bước 2: Tính tích của hai số nguyên dương nhận được ở Bước 1, ta có tích cần tìm.
Nhận xét:
- Khi nhân hai số nguyên dương, ta nhân chúng như nhân hai số tự nhiên.
- Tích của hai số nguyên cùng dấu là số nguyên dương.
Chú ý:
Cho hai số nguyên dương \(a\) và \(b\), ta có:
\(\left( { - a} \right).\left( { - b} \right) = ( + a).( + a) = a.b\)
\(\left( { - a} \right).\left( { + b} \right) = - a.b\)
Ví dụ:
a) \(( - 4).( - 15) = 4.15 = 60\)
b) \(\left( { + 2} \right).( + 5) = 2.5 = 10\).
Phép nhân các số nguyên có các tính chất:
+) Giao hoán: \(a.b = b.a\)
+) Kết hợp: \(a\left( {bc} \right) = \left( {ab} \right)c\)
+) Phân phối đối với phép cộng: \(a\left( {b + c} \right) = ab + ac\)
+) Phân phối đối với phép trừ: \(a\left( {b - c} \right) = ab - ac\)
Nhận xét:
Trong một tích nhiều thừa số ta có thể:
- Đổi chỗ hai thừa số tùy ý.
- Dùng dấu ngoặc để nhóm các thừa số một cách tùy ý:
Chú ý:
+) \(a.1 = 1.a = a\)
+) \(a.0 = 0.a = 0\)
+) Cho hai số nguyên \(x,\,\,y\):
Nếu \(x.y = 0\) thì \(x = 0\) hoặc \(y = 0\).
Ví dụ 1:
a) \(\left( { - 3} \right).5 = 5.\left( { - 3} \right) = - 15\)
b) \(\left[ {\left( { - 2} \right).7} \right].\left( { - 3} \right) = \left( { - 2} \right).\left[ {7.\left( { - 3} \right)} \right] = \left( { - 2} \right).\left( { - 21} \right) = 42\)
c) \(\left( { - 5} \right).12 + \left( { - 5} \right).88 = \left( { - 5} \right).\left( {12 + 88} \right) = \left( { - 5} \right).100 = - 500\).
d) \(\left( { - 9} \right).36 - ( - 9).26 = \left( { - 9} \right).\left( {36 - 26} \right) = \left( { - 9} \right).10 = - 90\)
Ví dụ 2:
Nếu \(\left( {x - 1} \right)\left( {x + 5} \right) = 0\) thì \(x - 1 = 0\) hoặc \(x + 5 = 0\).
Suy ra \(x = 1\) hoặc \(x = - 5\).
1.Phép chia hết
Cho \(a,b \in \mathbb{Z}\) và \(b \ne 0\). Nếu có số nguyên \(q\) sao cho \(a = bq\) thì:
Ta nói \(a\) chia hết cho \(b\), kí hiệu là \(a \vdots b\).
Ta gọi \(q\) là thương của phép chia \(a\) cho \(b\), kí hiệu \(a:b = q\).
Ví dụ:
\(( - 15) = 3.( - 5)\) nên ta nói:
+) \( - 15\) chia hết cho \(( - 5)\)
+) \( - 15:( - 5) = 3\)
+) \(3\) là thương của phép chia \( - 15\) cho \( - 5\).
2.Phép chia hai số nguyên khác dấu
Để chia hai số nguyên khác dấu ta làm như sau:
Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại
Bước 2: Tính thương của hai số nguyên dương nhận được ở Bước 1
Bước 3: Thêm dấu “-” trước kết quả nhận được ở Bước 2, ta có thương cần tìm.
Ví dụ:
3. Phép chia hết hai số nguyên cùng dấu
Để chia hai số nguyên âm ta làm như sau:
Bước 1: Bỏ dấu “-” trước mỗi số.
Bước 2: Tính thương của hai số nguyên dương nhận được ở Bước 1, ta có thương cần tìm.
Nhận xét: Phép chia hai số nguyên dương chính là phép chia hai số tự nhiên.
Nhận xét: Phép chia hai số nguyên dương chính là phép chia hai số tự nhiên.
Chú ý:
Cách nhận biết dấu của thương:
\(\begin{array}{l}\left( + \right):\left( + \right) = \left( + \right)\\\left( - \right):\left( - \right) = \left( + \right)\\\left( - \right):\left( + \right) = \left( - \right)\\\left( + \right):\left( - \right) = \left( - \right)\end{array}\)
Ví dụ:
Cho \(a,b \in \mathbb{Z}\). Nếu \(a \vdots b\) thì ta nói \(a\) là bội của \(b\) và \(b\) là ước của \(a\).
Nhận xét:
- Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\).
- Nếu \(b\) là ước của \(a\) thì \( - b\) cũng là ước của \(a\).
Chú ý: Khi \(c\) vừa là ước của \(a\), vừa là ước của \(b\) thì \(c\) được gọi là ước chung của \(a\) và \(b\).
Kí hiệu ước chung của hai số nguyên \(a,\,b\) là ƯC(a, b).
Ví dụ 1:
a) \(5\) là một ước của \( - 30\) vì \(\left( { - 30} \right) \vdots 5\).
b) \( - 42\) là một bội của \( - 7\) vì \(\left( { - 42} \right) \vdots \left( { - 7} \right)\).
Ví dụ 2:
a) Các ước của 4 là: \(1;\, - 1;\,2;\, - 2;\,4;\, - 4\).
b) Các bội của 8 là: \(0;\,8;\, - 8;\,16;\, - 16;...\)
Ví dụ 3:
Ta thấy \(1;\, - 1;\,2;\, - 2\) vừa là ước của \(6\), vừa là ước của \(4\) nên chúng gọi là ước chung của \(6\) và \(4\).
Khi đó ta viết: ƯC(6; 4)={1;-1;2;-2}.
Sách bài tập Ngữ văn 6 Học kì II - Cánh diều
Chủ đề 1. Máy tính và cộng đồng
Starter Unit: My world
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục công dân lớp 6
Chủ đề 8. PHÒNG TRÁNH THIÊN TAI VÀ GIẢM THIỂU BIẾN ĐỔI KHÍ HẬU
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
Tài liệu Dạy - học Toán Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6