- Các căn bậc hai của số thực \(a < 0\) là \(± i\sqrt{|a|}\)
- Xét phương trình bậc hai \(a{x^2} + bx + c= 0\) với \(a, b, c \in R\), \(a \ne 0\).
Đặt \(\Delta = {b^2}-4ac\).
- Nếu \(∆ = 0\) thì phương trình có một nghiệm kép (thực) \(x = -\dfrac{b}{2a}\).
- Nếu \(∆ > 0\) thì phương trình có hai nghiệm thực \(x_{1,2}\)= \( \dfrac{-b \pm \sqrt{\bigtriangleup }}{2a}\)
- Nếu \(∆ < 0\) thì phương trình có hai nghiệm phức \(x_{1,2}\) = \( \dfrac{-b \pm i\sqrt{|\bigtriangleup | }}{2a}\)
Nhận xét. Trên \(\mathbb C\), mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt). Tổng quát, mọi phương trình bậc \(n\), \(n \in {\mathbb N }^*\) đều có \(n\) nghiệm phức (các nghiệm không nhất thiết phải phân biệt).
Chương 9. Quần xã sinh vật
CHƯƠNG 3. DI TRUYỀN HỌC QUẦN THỂ
Đề kiểm tra giữa học kì 1
Bài 16. Đặc điểm dân số và phân bố dân cư ở nước ta
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 12