Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều
I. ĐỊNH NGHĨA
1. Tích vô hướng của hai vecto có dùng điểm đầu
+ \( (\overrightarrow {OA}, \overrightarrow {OB})\) là góc giữa hai tia OA, OB.
+ Tích vô hướng \(\overrightarrow {OA}.\overrightarrow {OB}=|\overrightarrow {OA}|.|\overrightarrow {OB}|.\cos (\overrightarrow {OA}, \overrightarrow {OB}) \)
2. Tích vô hướng của hai vecto tùy ý
Cho hai vecto \( \overrightarrow {a}, \overrightarrow {b}\) khác \( \overrightarrow {0}\). Lấy điểm O bất kì, vẽ \(\overrightarrow {OA} = \overrightarrow a \) và \(\overrightarrow {OB} = \overrightarrow b \).Khi đó
+ \(\left( {\;\overrightarrow a ,\overrightarrow b } \right) = (\overrightarrow {OA}, \overrightarrow {OB})\).
+ \(\overrightarrow {a}.\overrightarrow {b}=|\overrightarrow {a}|.|\overrightarrow {b}|.\cos (\overrightarrow {a}, \overrightarrow {b}) \)
* Chú ý:
+) \((\overrightarrow a ,\overrightarrow b) =(\overrightarrow b ,\overrightarrow a ) \)
+) \(\left( {\;\overrightarrow a ,\overrightarrow 0 } \right) = \alpha \) tùy ý, với \({0^ \circ } \le \alpha \le {180^ \circ }\)
+) \(\left( {\;\overrightarrow a ,\overrightarrow v } \right) = {90^ \circ } \Leftrightarrow \overrightarrow a \bot \overrightarrow b \). Đặc biệt: \(\overrightarrow 0 \bot \overrightarrow a \;\;\forall \overrightarrow a \;\)
II. TÍCH CHẤT
Cho 3 vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow w \) bất kì và mọi số thực k, ta có:
\(\begin{array}{l}\overrightarrow u .\;\overrightarrow v \;\; = \overrightarrow v .\;\overrightarrow u \;\\\overrightarrow u .\;\left( {\overrightarrow v + \overrightarrow w \;} \right)\; = \overrightarrow u .\;\overrightarrow v \; + \overrightarrow u .\;\overrightarrow w \;\\\left( {k\overrightarrow u } \right).\overrightarrow v = k.\left( {\overrightarrow u .\;\overrightarrow v \;} \right) = \overrightarrow u .\;\left( {k\overrightarrow v \;} \right)\end{array}\)
III. MỘT SỐ ỨNG DỤNG
1. Tính độ dài đoạn thẳng
\(A{B^2} = {\left| {\overrightarrow {AB} } \right|^2} = {\overrightarrow {AB} ^2}\)
2. Chứng minh hai đường thẳng vuông góc
\(AB \bot CD \Leftrightarrow \overrightarrow {AB} .\overrightarrow {CD} = 0\)
Soạn Văn 10 Kết nối tri thức tập 1 - chi tiết
Chương VI. Cộng đồng các dân tộc Việt Nam
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Hóa học lớp 10
Chuyên đề 3. Đọc, viết và giới thiệu một tập thơ, tập truyện ngắn hoặc một tiểu thuyết
Đề khảo sát chất lượng đầu năm
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10