PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Lý thuyết về biến đổi đơn giản biểu thức chứa căn thức bậc hai( tiếp theo)

 

1. Khử mẫu của biểu thức lấy căn

Với hai biểu thức A, B mà \(AB\geq 0\) và \(B\neq 0\), ta có:

\(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt{A\cdot B}}{\left | B \right |}.\)

Ví dụ: Với \(x\ne 0\) ta có: \(\sqrt {\dfrac{{11}}{x}}  = \dfrac{{\sqrt {11.x} }}{{\left| x \right|}}\)

2. Trục căn thức ở mẫu 

Với hai biểu thức A, B mà \(B>0,\) ta có

\(\dfrac{A}{\sqrt{B}}=\dfrac{A\sqrt{B}}{B}.\)

Với các biểu thức A, B, C mà \(A\geq 0\) và \(A\neq B^{2}\), ta có

\(\dfrac{C}{\sqrt{A}\pm B }=\dfrac{C(\sqrt{A}\mp B)}{A-B^{2}}.\) 

Với các biểu thức A, B, C mà \(A\geq 0\), \(B\geq 0\) và \(A\neq B\), ta có:

\(\dfrac{C}{\sqrt{A}\pm \sqrt{B}}=\dfrac{C(\sqrt{A}\mp \sqrt{B})}{A-B}.\) 

Ví dụ: Trục căn thức ở mẫu của biểu thức \(\dfrac{3}{{\sqrt x  + 2}}\) với \(x\ge 0\) 

Ta có: 

\(\begin{array}{l}
\dfrac{3}{{\sqrt x + 2}} = \dfrac{{3\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{3\sqrt x - 6}}{{{{\left( {\sqrt x } \right)}^2} - 4}}\\
= \dfrac{{3\sqrt x - 6}}{{x - 4}}
\end{array}\)

CÁC DẠNG TOÁN VỀ BIẾN ĐỔI BIỂU THỨC CHỨA CĂN

Dạng 1: Đưa thừa số vào trong dấu căn, đưa thừa số ra ngoài dấu căn

Phương pháp:

Sử dụng các công thức

* Đưa thừa số ra ngoài dấu căn

Với hai biểu thức $A,B$ mà $B \ge 0$, ta có $\sqrt {{A^2}B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,{\rm{khi}}\,\,A \ge 0\\ - A\sqrt B \,{\rm{khi}}\,A < 0\end{array} \right.$

* Đưa thừa số vào trong dấu căn

+) $A\sqrt B  = \sqrt {{A^2}B} $ với $A \ge 0$ và $B \ge 0$

+) $A\sqrt B  =  - \sqrt {{A^2}B} $ với $A < 0$ và $B \ge 0$

Dạng 2: So sánh hai căn bậc hai

Phương pháp:

Sử dụng công thức đưa thừa số ra ngoài dấu căn hoặc đưa thừa số vào trong dấu căn để so sánh hai căn bậc hai theo mối liên hệ

$0 \le A < B \Leftrightarrow \sqrt A  < \sqrt B $

 

Dạng 3: Rút gọn biểu thức chứa căn thức bậc hai

Phương pháp:

Sử dụng công thức đưa thừa số ra ngoài dấu căn hoặc đưa thừa số vào trong dấu căn và hằng đẳng thức $\sqrt {{A^2}}  = \left| A \right|$.

Sử dụng công thức trục căn thức ở mẫu

Dạng 4: Trục căn thức ở mẫu

Phương pháp:

Sử dụng các công thức

+) Với các biểu thức $A,B$ mà $A.B \ge 0;B \ne 0$, ta có $\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}$

+) Với các biểu thức $A,B$ mà $B > 0$, ta có $\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}$

+) Với các biểu thức $A,B,C$ mà $A \ge 0,A \ne {B^2}$, ta có $\dfrac{C}{{\sqrt A  + B}} = \dfrac{{C\left( {\sqrt A  - B} \right)}}{{A - {B^2}}};\dfrac{C}{{\sqrt A  - B}} = \dfrac{{C\left( {\sqrt A  + B} \right)}}{{A - {B^2}}}$

+) Với các biểu thức $A,B,C$ mà $A \ge 0,B \ge 0,A \ne B$ ta có

$\dfrac{C}{{\sqrt A  - \sqrt B }} = \dfrac{{C\left( {\sqrt A  + \sqrt B } \right)}}{{A - B}}$; $\dfrac{C}{{\sqrt A  + \sqrt B }} = \dfrac{{C\left( {\sqrt A  - \sqrt B } \right)}}{{A - B}}$

Dạng 5: Giải phương trình

Phương pháp:

+) Tìm điều kiện

+) Sử dụng công thức đưa thừa số ra ngoài dấu căn hoặc đưa thừa số vào trong dấu căn để đưa phương trình về dạng cơ bản

+) So sánh điều kiện rồi kết luận nghiệm.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved