Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
1. Định nghĩa
+ Căn bậc ba của một số a là số x sao cho \(x^3=a\)
+ Căn bậc ba của số a được kí hiệu là \(\root 3 \of a \)
Như vậy \({\left( {\root 3 \of a } \right)^3} = a\)
Mọi số thực đều có căn bậc ba.
2. Các tính chất
a) \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
b) \(\root 3 \of {ab} = \root 3 \of a .\root 3 \of b \)
c) Với b ≠ 0, ta có \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of a } \over {\root 3 \of b }}\)
3. Áp dụng
Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:
a) \(a\root 3 \of b = \root 3 \of {{a^3}b} \)
b) \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of {a{b^2}} } \over b}\)
c) Áp dụng hằng đẳng thức \(\left( {A \pm B} \right)\left( {{A^2} \mp AB + {B^2}} \right) = {A^3} \pm {B^3}\), ta có:
\(\eqalign{
& \left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right) \cr
& = {\left( {\root 3 \of a } \right)^3} \pm {\left( {\root 3 \of b } \right)^3} = a \pm b \cr} \)
Do đó
\(\eqalign{
& {M \over {\root 3 \of a \pm \root 3 \of b }} \cr
& = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {\left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)}} \cr
& = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {a \pm b}} \cr} \)
4. Các dạng toán cơ bản
Dạng 1: Tính giá trị biểu thức
Sử dụng: \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\)
Ví dụ: \(\sqrt[3]{{64}} = \sqrt[3]{{{4^3}}} = 4\)
Dạng 2: So sánh các căn bậc ba
Sử dụng: \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
Ví dụ: So sánh 3 và \(\sqrt[3]{{26}}\)
Ta có: \(3 = \sqrt[3]{{27}}\) mà \(26<27\) nên \(\sqrt[3]{{26}} < \sqrt[3]{{27}} \Leftrightarrow \sqrt[3]{{26}} < 3\)
Dạng 3: Giải phương trình chứa căn bậc ba
Sử dụng: \(\sqrt[3]{A} = B \Leftrightarrow A = {B^3}\)
Ví dụ:
\(\begin{array}{l}
\sqrt[3]{{x - 1}} = 2\\
\Leftrightarrow x - 1 = {2^3}\\
\Leftrightarrow x - 1 = 8\\
\Leftrightarrow x = 9
\end{array}\)
Tải 30 đề kiểm tra giữa kì 1 Toán 9
Bài 10. Thực hành: Vẽ và phân tích biểu đồ về sự thay đổi cơ cấu diện tích gieo trồng phân theo các loại cây, sự tăng trưởng đàn gia súc, gia cầm
CHƯƠNG II. MỘT SỐ VẤN ĐỀ XÃ HỘI CỦA TIN HỌC
Bài 16: Quyền tham gia quản lí nhà nước, quản lí xã hội của công dân
DI TRUYỀN VÀ BIẾN DỊ