Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
1. Kiến thức cần nhớ
\(\sin \alpha = \dfrac{{AB}}{{BC}};\cos \alpha = \dfrac{{AC}}{{BC}};\)
\(\tan \alpha = \dfrac{{AB}}{{AC}};\cot \alpha = \dfrac{{AC}}{{AB}}\).
Tính chất 1:
+ Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Tức là: Cho hai góc \(\alpha ,\beta \) có \(\alpha + \beta = {90^0}\)
Khi đó:
\(\sin \alpha = \cos \beta ;\cos \alpha = \sin \beta ;\) \(\tan \alpha = \cot \beta ;\cot \alpha = \tan \beta \).
Tính chất 2:
+ Nếu hai góc nhọn \(\alpha \) và \(\beta \) có \(\sin \alpha = \sin \beta \) hoặc \(\cos \alpha = \cos \beta \) thì \(\alpha = \beta \)
Tính chất 3:
+ Nếu \(\alpha \) là một góc nhọn bất kỳ thì
\(0 < \sin \alpha < 1;0 < \cos \alpha < 1,\) \(\tan \alpha > 0;\cot \alpha > 0\)
\({\sin ^2}\alpha + {\cos ^2}\alpha = 1;\) \(\tan \alpha .\cot \alpha = 1\)
$\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }};\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }};$
$1 + {\tan ^2}\alpha = \dfrac{1}{{{{\cos }^2}\alpha }};1 + {\cot ^2}\alpha = \dfrac{1}{{{{\sin }^2}\alpha }}$
Bảng tỉ số lượng giác các góc đặc biệt
2. Các dạng toán thường gặp
Dạng 1: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc
Phương pháp:
Sử dụng các tỉ số lượng giác của góc nhọn, định lý Py-ta-go, hệ thức lượng trong tam giác vuông để tính toán các yếu tố cần thiết.
Dạng 2: So sánh các tỉ số lượng giác giữa các góc
Phương pháp:
Bước 1 : Đưa các tỉ số lượng giác về cùng loại (sử dụng tính chất "Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia")
Bước 2: Với góc nhọn \(\alpha ,\,\beta \) ta có: $\sin \alpha < \sin \beta \Leftrightarrow \alpha < \beta ;$$\cos \alpha < \cos \beta \Leftrightarrow \alpha > \beta ;$
$\tan \alpha < \tan \beta \Leftrightarrow \alpha < \beta ;$
$\cot \alpha < \cot \beta \Leftrightarrow \alpha > \beta $.
Dạng 3: Rút gọn, tính giá trị biểu thức lượng giác
Phương pháp:
Ta thường sử dụng các kiến thức
+ Nếu \(\alpha \) là một góc nhọn bất kỳ thì
\(0 < \sin \alpha < 1;0 < \cos \alpha < 1\), \(\tan \alpha > 0;\cot \alpha > 0\) , \({\sin ^2}\alpha + {\cos ^2}\alpha = 1;\tan \alpha .\cot \alpha = 1\)
$\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }};\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }};$
$1 + {\tan ^2}\alpha = \dfrac{1}{{{{\cos }^2}\alpha }};1 + {\cot ^2}\alpha = \dfrac{1}{{{{\sin }^2}\alpha }}$
+ Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Bài 31. Vùng Đông Nam Bộ
Bài 14. Giao thông vận tải và bưu chính viễn thông
Đề thi vào 10 môn Anh Bắc Ninh
Tải 20 đề kiểm tra 1 tiết học kì 1 Văn 9
Bài 18. Vùng Trung du và miền núi Bắc Bộ (tiếp theo)