HĐ1
Một cổ động viên của câu lạc bộ Everton, Anh đã thống kê điểm số mà hai câu lạc bộ Leicester City và Everton đạt được trong năm mùa giải Ngoại hạng Anh gần đây, từ mùa giải 2014 – 2015 đến mùa giải 2018 - 2019 như sau:
Leicester City: 41 81 44 47 52
Everton: 47 47 61 49 54
Cổ động viên đó cho rằng, Everton thi đấu ổn định hơn Leicester City. Em có đồng ý với nhận định này không? Vì sao?
Phương pháp giải:
Tính hiệu của số lớn nhất và số nhỏ nhất, hiệu càng nhỏ thì càng ổn định.
Lời giải chi tiết:
Ta có câu lạc bộ Leicester City có điểm lớn nhất là 81 và nhỏ nhất là 41 nên khoảng cách giữa điểm cao nhất và thấp nhất là 40.
Câu lạc bộ Everton có điểm lớn nhất là 61 và nhỏ nhất là 41 nên khoảng cách giữa điểm cao nhất và thấp nhất là 20.
Ta thấy 20
Luyện tập 1
Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:
163 159 172 167 165 168 170 161
Tính khoảng biến thiên của mẫu số liệu này.
Phương pháp giải:
Khoảng biến thiên R=Số lớn nhất - Số nhỏ nhất.
Lời giải chi tiết:
Số lớn nhất là 172, số nhỏ nhất là 159
R=172-159=13
HĐ2
Trong một tuần, nhiệt độ cao nhất trong ngày (đơn vị C) tại hai thành phố Hà Nội và Điện Biên được cho như sau:
Hà Nội: 23 25 28 28 32 33 35.
Điện Biên: 16 24 26 26 26 27 28.
a) Tính các khoảng biến thiên của mỗi mẫu số liệu và so sánh.
b) Em có nhận xét gì về sự ảnh hưởng của giá trị 16 đến khoảng biến thiên của mẫu số liệu về nhiệt độ cao nhất trong ngày tại Điện Biên?
c) Tính các tứ phân vị và hiệu \({Q_3} - {Q_1}\) cho mỗi mẫu số liệu. Có thể dùng hiệu này để đo độ phân tán của mẫu số liệu không?
Phương pháp giải:
a) Tìm số lớn nhất, số nhỏ nhất và áp dụng công thức tính khoảng biến thiên:
R=Số lớn nhất-Số nhỏ nhất
b) Nhận xét 16 có chênh lệch thế nào so với các số còn lại.
c) Tìm tứ phân vị
+ Sắp xếp theo thứ tự không giảm.
+ Tìm trung vị. Giá trị này là \({Q_2}\)
+ Tìm trung vị của nửa số liệu bên trái \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_1}\)
+ Tìm trung vị của nửa số liệu bên phải \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_3}\)
Lời giải chi tiết:
a)
Hà Nội:
Số lớn nhất là 35, số nhỏ nhất là 23
R=35-23=12
Điện Biên:
Số lớn nhất là 28, số nhỏ nhất là 16
R=28-16=12
Khoảng biến thiên về nhiệt độ của Hà Nội và Điện Biên bằng nhau.
b) Số 16 làm cho khoảng biến thiên về nhiệt độ tại Điện Biên lớn hơn.
c)
Hà Nội: 23 25 28 28 32 33 35.
\({Q_2} = 28\)
\({Q_1} = 25\)
\({Q_3} = 33\)
\({Q_3} - {Q_1} = 33 - 25 = 8\)
Điện Biên: 16 24 26 26 26 27 28.
\({Q_2} = 26\)
\({Q_1} = 24\)
\({Q_3} = 27\)
\({Q_3} - {Q_1} = 27 - 24 = 3\)
Có thể dùng hiệu này để đo độ phân tán.
Chú ý
\({Q_3} - {Q_1}\) chính là khoảng tứ phân vị.
Luyện tập 2
Mẫu số liệu sau đây cho biết số bài hát ở mỗi album trong bộ sưu tập của An:
12 7 10 9 12 9 10 11 10 14.
Hãy tìm khoảng tứ phân vị cho mẫu số liệu này.
Phương pháp giải:
Bước 1: Tìm tứ phân vị
+ Sắp xếp theo thứ tự không giảm.
+ Tìm trung vị. Giá trị này là \({Q_2}\)
+ Tìm trung vị của nửa số liệu bên trái \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_1}\)
+ Tìm trung vị của nửa số liệu bên phải \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_3}\)
Bước 2: Tìm khoảng tứ phân vị
\({\Delta _Q} = {Q_3} - {Q_1}\) chính là khoảng tứ phân vị.
Lời giải chi tiết:
Sắp xếp lại:
7 9 9 10 10 10 11 12 12 14
Trung vị \({Q_2} = \dfrac{{10 + 10}}{2} = 10\)
Nửa trái \({Q_2}\): 7 9 9 10 10
\({Q_1} = 9\)
Nửa phải: 10 11 12 12 14
\({Q_3} = 12\)
Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1} = 12 - 9 = 3\)
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10