Bài 1. Tập hợp
Bài 10. Số nguyên tố. Hợp số
Bài 2. Tập hợp các số tự nhiên
Bài 8. Dấu hiệu chia hết cho 2, cho 5
Bài 6. Thứ tự thực hiện các phép tính
Bài 3. Phép công, phép trừ các số tự nhiên
Bài 5. Phép tính lũy thừa với số mũ tự nhiên
Bài 9. Dấu hiệu chia hết cho 3, cho 9
Bài 7. Quan hệ chia hết. Tính chất chia hết
Bài tập cuối chương I
Bài 12. Ước chung và ước chung lớn nhất
Bài 13. Bội chung và bội chung nhỏ nhất
Bài 4. Phép nhân, phép chia các số tự nhiên
Bài 11. Phân tích một số ra thừa số nguyên tố
I. Cách tìm một ước nguyên tố của một số:
Để tìm một ước nguyên tố của số tự nhiên n lớn hơn 1, ta có thể làm như sau: Lần lượt làm phép chia n cho các số nguyên tố theo thứu tự tăng dần: 2;3;5;7;11;13;...
Khi đó, phép chia hết đầu tiên cho ta số chia là một ước nguyên tố của n
II.Phân tích một số ra thừa số nguyên tố
- Phân tích một số tự nhiên lớn hơn \(1\) ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.
- Viết các thừa số nguyên tố theo thứ tự từ bé đến lớn, tích các thừa số giống nhau dưới dạng lũy thừa.
Sơ đồ cây:
Bước 1: Phân tích số n thành tích của hai số bất kì khác 1 và chính nó.
Bước 2: Tiếp tục phân tích ước thứ nhất và ước thứ hai thành tích của hai số bất kì khác 1 và chính nó.
Bước 3: Cứ như vậy đến khi nào xuất hiện số nguyên tố thì dừng lại.
Bước 4: Số n bằng tích của các số cuối cùng của mỗi nhánh.
Ví dụ:
Phân tích số 12 ra thừa số nguyên tố bằng sơ đồ cây:
Như vậy \(12 = {2^2}.3\)
Sơ đồ cột:
Chia số \(n\) cho một số nguyên tố (xét từ nhỏ đến lớn ), rồi chia thương tìm được cho một số nguyên tố (cũng xét từ nhỏ đến lớn), cứ tiếp tục như vậy cho đến khi thương bằng \(1.\)
Ví dụ: Số \(76\) được phân tích như sau:
\[76\] | \[2\] |
\[38\] | \[2\] |
\[19\] | \[19\] |
\[1\] |
Như vậy \(76 = {2^2}.19\)
CÁC DẠNG TOÁN VỀ PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ
Phương pháp:
Ta thường phân tích một số tự nhiên $n\left( {n > 1} \right)$ ra thừa số nguyên tố bằng 2 cách:
+ Sơ đồ cây
+ Phân tích theo hàng dọc.
Phương pháp:
+ Phân tích số cho trước ra thừa số nguyên tố.
+ Chú ý rằng nếu $c = a.b$ thì $a$ và $b$ là hai ước của $c.$
$a = b.q$\( \Leftrightarrow a \vdots b \Leftrightarrow a \in B\left( b \right)\) và \(b \in \)Ư\(\left( a \right)\) $(a,b,q \in N,b \ne 0)$
Phương pháp:
Phân tích đề bài, đưa về việc tìm ước của một số cho trước bằng cách phân tích số đó ra thừa số nguyên tố.
CHƯƠNG 1 - NHÀ Ở
CHƯƠNG X: TRÁI ĐẤT VÀ BẦU TRỜI
Chủ đề 6. Giải quyết vấn đề với sự trợ giúp của máy tính
Vở thực hành Toán 6 - Tập 2
Đề thi học kì 1
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
Tài liệu Dạy - học Toán Lớp 6
SGK Toán - Chân trời sáng tạo Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6