Luyện tập chung trang 27
Bài 5. Phép nhân và phép chia số tự nhiên
Bài tập cuối chương I
Bài 1. Tập hợp
Bài 4. Phép cộng và phép trừ số tự nhiên
Bài 2. Cách ghi số tự nhiên
Bài 7. Thứ tự thực hiện các phép tính
Bài 3. Thứ tự trong tập hợp các số tự nhiên
Bài 6. Lũy thừa với số mũ tự nhiên
Luyện tập chung trang 20
1. Biểu diễn số tự nhiên trên tia số
Tập hợp các số tự nhiên kí hiệu là \(N\) , tập hợp các số tự nhiên khác 0 kí hiệu là \({N^*}\) .
Ta có:
N = { 0; 1; 2 ; 3 ; 4 ;......}
\({N^*}\)= {1 ; 2 ; 3 ; 4; ......}
Mỗi số tự nhiên được biểu diễn bởi một điểm trên tia số. Trên tia số, điểm biểu diễn số nhỏ ở bên trái điểm biểu diễn số lớn.
Số tự nhiên a được gọi là điểm a. Điểm 0 là gốc.
Ví dụ: Điểm biểu diễn số 4 trên tia số ta gọi là điểm 4.
2. Thứ tự trong tập hợp các số tự nhiên
+ Trong hai số tự nhiên khác nhau, có một số nhỏ hơn số kia, ta viết \(a < b\) hoặc \(b > a.\)
Ngoài ra ta cũng viết \(a \ge b\) để chỉ \(a > b\) hoặc \(a = b.\)
+ Nếu \(a < b\) và \(b < c\) thì \(a < c.\) (Tính chất bắc cầu)
+ Hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị. Mỗi số tự nhiên có một số liền sau duy nhất và một số liền trước duy nhất.
+ Số 0 là số tự nhiên bé nhất.
Ví dụ:
Số 3 và số 4 là hai số tự nhiên liên tiếp. Số liền sau của 8 là 9.
Số liền trước của 6 là 5.
Các dạng bài tập
1. Tìm số liền sau, số liền trước của một số tự nhiên cho trước
Phương pháp:
- Để tìm số liền sau của số tự nhiên $a,$ ta tính $a + 1.$
- Để tìm số liền trước của số tự nhiên $a$ khác $0,$ta tính $a - 1.$
Chú ý:
- Số $0$ không có số liền trước.
- Hai số tự nhiên liên tiếp thì hơn kém nhau $1$ đơn vị.
2. Tìm các số tự nhiên thỏa mãn điều kiện cho trước
Phương pháp:
Liệt kê tất cả các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho
Ví dụ:
Tìm tất cả các số tự nhiên thỏa mãn \(12 < x < 16\)
Giải:
Ta có: các số tự nhiên lớn hơn $12$ và nhỏ hơn $16$ là: $13; 14; 15$.
Tìm tất cả các số tự nhiên thỏa mãn \(12 < x < 16\)
3. Sử dụng công thức đếm số các số tự nhiên
Phương pháp:
Để đếm các số tự nhiên từ $a$ đến $b,$ hai số liên tiếp cách nhau $d$ đơn vị, ta dùng công thức sau:
$\dfrac{{b - a}}{d} + 1$ hay bằng (số cuối – số đầu):khoảng cách +1.
- Căn cứ vào các phần tử đã được liệt kê hoặc căn cứ vào tính chất đặc trưng cho các phần tử của tập hợp cho trước, ta có thể tìm được số phần tử của tập hợp đó.
- Sử dụng các công thức sau:
+ Tập hợp các số tự nhiên từ $a$ đến $b$ có: $b-a + 1$ phần tử (1)
+ Tập hợp các số chẵn từ số chẵn $a$ đến số chẵn $b$ có: $\left( {b-a} \right):2 + 1$ phần tử ( 2)
+ Tập hợp các số lẻ từ số lẻ $m$ đến số lẻ $n$ có: $\left( {n - m} \right):2 + 1$ phần tử ( 3)
+ Tập hợp các số tự nhiên từ $a$ đến $b,$ hai số kế tiếp cách nhau d đơn vị, có: $\left( {b - a} \right):d + 1$ phần tử (4)
CHƯƠNG IV: HỖN HỢP - TÁCH CHẤT KHỎI HỖN HỢP
Đề thi học kì 1
CHƯƠNG IX. NĂNG LƯỢNG
Unit 7: The time machine
Đề kiểm tra học kì 2
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
Tài liệu Dạy - học Toán Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Chân trời sáng tạo Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6