SGK Toán 8 - Kết nối tri thức với cuộc sống tập 1
SGK Toán 8 - Kết nối tri thức với cuộc sống tập 1

Trả lời câu hỏi 1 - Mục Luyện tập trang 23

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b
Lời giải phần c

Trong các phép chia sau đây, phép chia nào không là phép chia hết? Tại sao? Tìm thương của các phép chia còn lại:

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b
Lời giải phần c

Lời giải phần a

1. Nội dung câu hỏi

-15x2y2 chia cho 3x2y.

 

2. Phương pháp giải

Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

Muốn chia đơn thức A cho đơn thức B, ta làm như sau:

+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.

+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.

+ Nhân các kết quả tìm được với nhau.

 

3. Lời giải chi tiết

-15x2y2:3x2y=(-15:3)·x2:x2:y2:y=-5y

Lời giải phần b

1. Nội dung câu hỏi

6xy chia cho 2yz.

 

2. Phương pháp giải

Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

Muốn chia đơn thức A cho đơn thức B, ta làm như sau:

+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.

+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.

+ Nhân các kết quả tìm được với nhau.

 

3. Lời giải chi tiết

Không là phép chia hết vì số mũ của biến z trong 2yz lớn hơn số mũ của biến z trong 6xy

Lời giải phần c

1. Nội dung câu hỏi

4xy3 chia cho 6xy2.

 

2. Phương pháp giải

Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

Muốn chia đơn thức A cho đơn thức B, ta làm như sau:

+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.

+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.

+ Nhân các kết quả tìm được với nhau.

 

3. Lời giải chi tiết

4xy3:6xy2=(4:6)·(x:x)·y3:y2=23y

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved