Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Cho phương trình \(3x^2 +7x + 4 = 0.\)
a) Xác định các hệ số \(a, b, c\) rồi tính \(a - b + c.\)
b) Chứng tỏ rằng \( x_1 = -1\) là một nghiệm của phương trình.
c) Dùng định lý Vi-ét để tìm \(x_2.\)
Phương pháp giải - Xem chi tiết
a) Phương trình bậc hai \(ax^2+bx+c=0\) có các hệ số \(a;b;c\), từ đó tính \(a-b+c.\)
b) Thay \(x=-1\) vào phương trình đã cho, nếu ta được một đẳng thức đúng thì \(x_1=-1\) là một nghiệm của phương trình.
c) Sử dụng hệ thức Vi-et: \(x_1.x_2=\dfrac{c}{a}\) để tính \(x_2.\)
Lời giải chi tiết
a) Phương trình \(3x^2 +7x + 4 = 0\) có các hệ số \(a = 3; b = 7; c = 4\)
\( \Rightarrow a - b + c = 3 - 7 + 4 = 0\)
b) Thay \(x = -1\) vào phương trình ta được:
\(3.(-1)^2 +7.(-1) + 4 = 0 \Leftrightarrow 0=0\) (luôn đúng)
Vậy \(x_1 = -1\) là một nghiệm của phương trình
c) Theo định lí Vi-et ta có:
\(\displaystyle{x_1}.{x_2} = {c \over a} = {4 \over 3} \Rightarrow (-1).{x_2} = {4 \over 3} \Rightarrow {x_2} = {-4 \over 3}\)
Các thể loại văn tham khảo lớp 9
PHẦN HAI: LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NAY
Đề kiểm tra 15 phút - Chương 6 - Sinh 9
TÀI LIỆU DẠY - HỌC HÓA 9 TẬP 2
Đề thi vào 10 môn Toán Đồng Tháp