/

/

Số tự nhiên N là gì? Tính chất và bài tập liên quan

Admin FQA

28/12/2022, 17:41

1225

Số tự nhiên N là gì? Cùng Admin đi ôn lại kiến thức về số tự nhiên, nắm thật vững để làm nền tảng giải toán cao hơn về sau các em nhé! Cùng bắt đầu bài học thú vị ngày hôm nay với chia sẻ trong bài viết dưới đây thôi nào!!

N là gì trong toán học? Số tự nhiên N là tập hợp các số lớn hơn hoặc bằng 0. Chẳng hạn dãy số tự nhiên gồm các số: 0; 1; 2; 3; 4;... sẽ được ký hiệu thành N = {0;1;2;3;4;...}. Số tự nhiên N nhỏ nhất sẽ là 0 và không có số lớn nhất. Tập hợp số tự nhiên được sử dụng với ký hiệu N. Tập hợp các số tự nhiên khác 0 được kí hiệu là N*.

Các số tự nhiên N được biểu diễn qua một tia số, mỗi số là một điểm trên tia và được gọi là điểm a. Hình vẽ biểu diễn tia dãy số tự nhiên như sau:

Tia biểu diễn tập hợp số tự nhiên N

Trong thực tế và toán học số tự nhiên N được sử dụng rất nhiều và phổ biến. Các em cần nắm rõ tính chất của nó để có thể vận dụng vào làm bài tập. Cụ thể như sau:

  • Một dãy số tự nhiên N liên tiếp sẽ có tính tăng dần và 2 số liền kề nhau sẽ có một số có giá trị nhỏ hơn và một số có giá trị lớn hơn. Chẳng hạn như 2 số tự nhiên liền kề là 5,6, thì số 5 có giá trị nhỏ hơn 6 và số 6 có giá trị lớn hơn 5.
  • Chiều mũi tên biểu diễn tia số tự nhiên luôn từ chiều từ trái sang phải. Các điểm tương ứng với các giá trị trên tia biểu diễn luôn có tính tăng dần.
  • Nếu có 3 số tự nhiên là a, b và c mà a < b và b < c, theo tính chất bắc cầu ta có a < c. Ví dụ như: 2 < 3, 3 < 4 => 2 < 4.
  • Mỗi số tự nhiên chỉ có một số liền trước và một số liền sau. Ví dụ như số 6 có số liền trước là 5 và số liền sau là 7.
  • Trong dãy số tự nhiên N thì 0 là số tự nhiên nhỏ nhất và không có số lớn nhất. Do đó, tổng số phần từ tập hợp N các số tự nhiên là vô hạn.

Tính chất của số tự nhiên N

Có rất nhiều phép tính mà các em có thể thực hiện trên tập hợp số tự nhiên N như sau:

Phép cộng và nhân số tự nhiên

a + b = b + a

a.b = b.a

(a + b) + c = a + (b + c)

(a.b).c = a.(b.c)

a + 0 = 0 + a = a

a.1 = 1.a = a

a.(b + c) = a.b + a.c và ngược lại: a.b + a.c = a.(b + c)

Phép trừ số tự nhiên

a - b (a > b; a, b ∊ N)

a.(b – c) = a.b – a.c

Phép chia số tự nhiên

a : b (a chia hết cho b khi a = b.q)

a = b.q + r (r là số dư thỏa mãn điều kiện 0 < r < b)

Phép tính n giai thừa số tự nhiên

n! = 1.2.3 …..n

Qua các phép tính được chia sẻ trong bài, các em có thể thấy được rằng, nắm rõ về số tự nhiên N hoặc N* sẽ giúp các em giải toán cực hiệu quả. Nó chính là phần kiến thức nền tảng để các em học toán giỏi và vững hơn sau này đó nhé!

Để giúp các em hiểu rõ hơn về số tự nhiên N, cùng Admin đi vào một số bài tập cơ bản để ôn luyện nhé!

Bài 1: Viết các số tự nhiên liền sau và liền trước các số được cho dưới đây:

a, 18

b, 91

c, a (với a ∊ N)

Giải:

a, Số liền trước 18 là 17, số liền sau 18 là 19.

b, Số liền trước 91 là 90, số liền sau 91 là 92.

c, Số liền trước a là a - 1, số liền sau a là a + 1.

Bài 2: Liệt kê phần tử trong các trường hợp sau:

a, A = {x ∊ N | 14 < x < 18}

b, B = {x ∊ N | 11 ≤ x ≤ 13}

Giải: 

a, A = {15; 16; 17}

b, B = {11; 12; 13}

Bài 3: Viết tập hợp A các số tự nhiên không vượt qua 8 và biểu diễn trên tia số.

Giải:

A = {0; 1; 2; 3; 4; 5; 6; 7; 8} Hoặc A = {x ∊ N | 0 ≤ x ≤ 8}

Biểu diễn tập hợp A trên tia số như sau:

Biểu diễn tập hợp A trên tia số

Bài 3: Điền các số còn thiếu vào chỗ trống.

a, …, 116, .....

b, 301, ...., ....

c, …, …., 901

Giải: 

a, 115, 116, 117

b, 301, 302, 303

c, 899, 900, 901

Bài 4: Điền các số tự nhiên theo yêu cầu vào ô trống trong bảng.

Số đã cho

Số hàng trăm

Số hàng chục

1505

?

?

2272

?

?

9999

?

?

Giải 

Số đã cho

Số hàng trăm

Số hàng chục

1505

5

0

2272

2

7

9999

9

9

Bài 5: Viết số tự nhiên nhỏ nhất có 3 chữ số.

Giải:

Số tự nhiên nhỏ nhất có 3 chữ số là 100.

Bài viết trên Admin không chỉ giúp các em giải đáp số tự nhiên N là gì mà còn cung cấp rất nhiều các kiến thức bổ ích và các bài tập cơ bản liên quan. Hy vọng với nội dung bài viết này sẽ giúp các em hiểu rõ về số tự nhiên N.

Bình luận (0)
Bạn cần đăng nhập để bình luận
Bài viết liên quan
new
Cách dùng as soon as hay và chuẩn xác nhất

Tìm hiểu cách dùng cấu trúc “as soon as” trong tiếng Anh, bao gồm các dạng phổ biến và ví dụ minh họa chi tiết. Bài viết giúp bạn nắm vững và sử dụng cấu trúc này một cách hiệu quả.

Admin FQA

15/05/2024

new
Cách dùng cấu trúc “in spite of” hay và chuẩn xác nhất

Khám phá cách dùng cấu trúc “in spite of” trong tiếng Anh, bao gồm các dạng phổ biến và ví dụ minh họa chi tiết. Bài viết giúp bạn nắm vững và sử dụng cấu trúc này một cách hiệu quả.

Admin FQA

15/05/2024

new
Cách dùng suggest hay và chuẩn xác nhất

Khám phá cách dùng cấu trúc “suggest” trong tiếng Anh, bao gồm các dạng phổ biến và ví dụ minh họa chi tiết. Bài viết giúp bạn nắm vững và sử dụng cấu trúc này một cách hiệu quả.

Admin FQA

15/05/2024

new
Cách dùng When: Cấu trúc cơ bản và các trường hợp sử dụng 'When'

Bí kíp chinh phục cấu trúc When trong tiếng Anh một cách bài bản và hiệu quả. Nắm vững cách dùng When để giao tiếp trôi chảy và tự tin trong mọi ngữ cảnh. "When" là một từ khóa quan trọng trong tiếng Anh, đóng vai trò then chốt trong việc diễn đạt thời gian và mối quan hệ logic giữa các sự kiện. Tuy nhiên, cách sử dụng "When" có thể khiến nhiều người bối rối do sự đa dạng trong các trường hợp áp dụng. Bài viết này sẽ cung cấp cho bạn hướng dẫn chi tiết về cách dùng "When" từ A đến Z, giúp bạn tự tin sử dụng từ khóa này trong giao tiếp và viết lách.

Admin FQA

15/05/2024

new
Collocation là gì? Cách học collocation hiệu quả và tài liệu học hay nhất

Bài viết này sẽ cung cấp cho bạn định nghĩa chi tiết về collocation, vai trò quan trọng của collocation trong tiếng Anh, cách học collocation hiệu quả và những tài liệu hữu ích để trau dồi vốn từ vựng của bạn.

Admin FQA

14/05/2024

new
By the time là gì? Phân biệt với When/ Until

Bạn đang gặp khó khăn trong việc sử dụng 3 liên từ này? Bài viết này sẽ giải thích chi tiết về cấu trúc "By the time" trong tiếng Anh, cách sử dụng và cách phân biệt nó với hai liên từ khác là "When" và "Until".

Admin FQA

14/05/2024

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi