Cho đường tròn (O,R) có hai đường kính AB và CD vuông góc tại O. Gọi I là trung điểm của OB. Tia CI cắt đường tròn (O) tại E. Gọi H là giao điểm của AE và CD a. Chứng minh tứ giác OIED nội tiếp b. Chứn...
Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
a. Ta có và là trung điểm của nên . Mà nên . Do đó, (cùng chắn ) và (do ). Từ đó suy ra . Vậy tứ giác nội tiếp.
b. Ta có (do hai tam giác và đồng dạng). Gọi là giao điểm của và . Khi đó, ta có (do cùng vuông góc với ) và (do cùng vuông góc với ). Từ đó suy ra:
Nhân hai vế của cả hai phương trình lại với nhau, ta được:
Do đó, ta có:
Thay và vào, ta được:
Mà ta có nên:
Vậy ta đã chứng minh được cả hai phần.
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019
Email: info@fqa.vn
Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.