Câu 44. Đường thẳng A ở hình bên biểu thị tổng chi phí lắp đặt và tiền cước sử dụng dịch vụ Internet (đơn vị: trăm nghìn đồng) theo thời gian của một gia đình (đơn vị: tháng). Xét tính đúng, sai của các khẳng định sau: a) Mức phí ban đầu lắp đặt để sử dụng Internet là 500 000 đồng. b) Mức phí lắp đặt và sử dụng Internet trong 5 tháng đầu tiên là 2 000 000 đồng. c) Phương trình đường thẳng A là d) Chi phí lắp đặt và sử dụng Internet trong 12 tháng đầu tiên là 4 100 000 đồng.
Rất tiếc, nhưng mà không thể giải quyết vấn đề này mà không có hình minh họa đi kèm. Hình vẽ là cần thiết để xác định các thông số như giao điểm của đường thẳng A với trục y (đại diện cho chi phí ban đầu), độ dốc của đường thẳng (đại diện cho chi phí hàng tháng), và các điểm cụ thể trên đường thẳng (đại diện cho tổng chi phí sau một số lượng cố định của tháng).
Tuy nhiên, tôi có thể giúp bạn hiểu cách để giải quyết loại bài toán này:
1. Đầu tiên, bạn cần xác định giao điểm của đường thẳng A với trục y. Điều này sẽ cho bạn biết mức phí ban đầu để lắp đặt Internet.
2. Tiếp theo, xác định độ dốc của đường thẳng A. Độ dốc này sẽ cho bạn biết mức phí hàng tháng để sử dụng Internet.
3. Cuối cùng, sử dụng các thông tin đã thu được để tính toán tổng chi phí sau một số lượng cố định của tháng.
4. So sánh kết quả với các khẳng định trong câu hỏi để xác định đúng hay sai.
Nếu bạn cung cấp hình vẽ, tôi sẽ rất vui lòng giúp bạn giải quyết bài toán này.
Câu 45. Chuyển động của một vật thể trong khoảng thời gian 90 phút được thể hiện trong mặt phẳng toạ độ. Theo đó, tại thời điểm vật thể ở vị trí có toạ độ Xét tính đúng, sai của các khẳng định sau: a) Vị trí ban đầu của vật thể là (1;3). b) Vị trí kết thúc của vật thể là (3;4) . c) Quỹ đạo chuyền động của vật thể là đường tròn có tâm d) Quỹ đạo chuyền động của vật thể là đường tròn có bán kính bằng 2.
Loại bài toán này là bài toán vận tốc trong không gian hai chiều, sử dụng hàm sin và cos để mô tả chuyển động của vật thể.
Bây giờ, chúng ta sẽ tiến hành giải quyết từng phần của câu hỏi:
a) Vị trí ban đầu của vật thể là (1;3).
Để xác định điều này, chúng ta cần thay vào biểu thức cho toạ độ của vật thể. Khi , ta có và . Do đó, toạ độ của vật thể sẽ là .
Vậy nên, khẳng định a) là sai.
b) Vị trí kết thúc của vật thể là (3;4).
Tương tự như trên, để xác định điều này, chúng ta cần thay vào biểu thức cho toạ độ của vật thể. Khi , ta có và . Do đó, toạ độ cuối cùng của vật thể sẽ là .
Vậy nên, khẳng định b) là sai.
c) Quỹ đạo chuyển động của vật thể là đường tròn có tâm .
Để xác định điều này, chúng ta cần nhìn vào biểu thức cho toạ độ của vật thể. Biểu thức này cho thấy rằng vật thể di chuyển theo hàm sin và cos, tức là nó di chuyển theo một quỹ đạo tròn. Tuy nhiên, tâm của quỹ đạo này không phải là mà là như đã tính ở phần a).
Vậy nên, khẳng định c) là sai.
d) Quỹ đạo chuyền động của vật thể là đường tròn có bán kính bằng 2.
Bán kính của quỹ đạo tròn được xác định bởi giá trị lớn nhất của hàm sin hoặc cos, trong trường hợp này là 1. Do đó, quỹ đạo chuyển động của vật thể không phải là một hình tròn có bán kính bằng 2.
Vậy nên, khẳng định d) cũng sai.
Câu 46. Hình bên mô phỏng một trạm thu phát sóng điện thoại di động đặt ở vị trí I có tọa độ trong mặt phẳng tọa độ (đơn vị trên hai trục là ki-lô-mét). Biết rằng trạm thu phát sóng đó được thiết kế với bán kính phủ sóng 3 km. Xét tính đúng, sai của các khẳng định sau: a) Phương trình đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng là b) Trên trục hoành, vị trí gần trạm phát sóng nhất là vị trí có tọa đô (-2;0). c) Người sử dụng điện thoại ở vị trí có tọa độ thì không thể sử dụng dịch vụ của trạm này. d) Khoảng cách ngắn nhất để một người ở vị trí có tọa độ (-3;4) di chuyển được tới vùng phủ sóng là 300 m.
Loại bài toán: Bài toán này liên quan đến hình học trong mặt phẳng tọa độ, cụ thể là về đường tròn và khoảng cách giữa các điểm.
Giải bài toán:
a) Phương trình của một đường tròn có tâm và bán kính r là . Trong trường hợp này, tâm của đường tròn là và bán kính là 3. Do đó, phương trình của đường tròn sẽ là . Vì vậy, khẳng định a) là Đúng.
b) Trên trục hoành, vị trí gần trạm phát sóng nhất chính là vị trí nằm ngay dưới tâm của đường tròn. Tức là, nếu ta giữ nguyên hoành độ x=-2 và thay tung độ y=1 thành y=0 (đi xuống theo chiều dọc), ta sẽ thu được điểm gần nhất. Vì vậy, khẳng định b) cũng Đúng.
c) Để kiểm tra xem một điểm có nằm trong vùng phủ sóng hay không, ta chỉ cần thay tọa độ của điểm vào phương trình của đường tròn. Nếu kết quả nhỏ hơn hoặc bằng 9, điểm đó nằm trong vùng phủ sóng. Thay vào phương trình, ta thu được: . Vì 5 nhỏ hơn 9, người sử dụng điện thoại ở vị trí này có thể sử dụng dịch vụ của trạm. Do đó, khẳng định c) là Sai.
d) Khoảng cách từ một điểm tới một đường tròn là khoảng cách từ điểm đó tới tâm của đường tròn trừ đi bán kính của đường tròn. Tọa độ của người sử dụng là và tọa độ của tâm I là . Khoảng cách từ người sử dụng tới tâm I là km. Do đó, khoảng cách từ người sử dụng tới vùng phủ sóng là km = 0.16 km = 160 m < 300 m. Vì vậy, khẳng định d) là Sai.