03/11/2024
03/11/2024
Câu 15:
$\displaystyle C( x) \ =\ 500\ +\ 40x$
$\displaystyle R( x) \ =\ 100x\ -\ 0,5x^{2}$
a) Đúng
Lợi nhuận $\displaystyle P( x)$ được tính bởi công thức
$\displaystyle \begin{array}{{>{\displaystyle}l}}
P( x) \ =\ R( x) \ -\ C( x)\\
=\ -0.5x^{2} \ +\ 100x\ -\ ( 40x\ +\ 500)\\
=\ -0.5x^{2} \ +\ 100x\ -\ 40x\ -\ 500\\
=\ -0,5x^{2} \ +\ 60x\ -\ 500
\end{array}$
b) Đúng
c) Đúng
Ta có: $\displaystyle P'( x) \ =\ -x\ +\ 60$
$\displaystyle P'( x) \ =\ 60\ \Leftrightarrow \ x\ =\ 60$
$\displaystyle P''( x) \ =\ -1\ < \ 0$ nên $\displaystyle x\ =\ 60$ là điểm cực đại của $\displaystyle P( x)$
d) Sai
Số lượng sản phẩm tối ưu mà công ty nên sản xuất và bán là 60 đơn vị.
03/11/2024
a) Đ
b) Đ( câu này mình không chắc lắm )
c) Đ
d) $P\left(x\right)=-0,5x^2+60x-500;P^{\prime}\left(x\right)=-x+60$
=> Sai (60 mới đúng)
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
31/08/2025
31/08/2025
31/08/2025
31/08/2025
Top thành viên trả lời