Cho hình chữ nhật ABCD. Nối C với một điểm E bất kỳ trên đường chéo BD. Trên tia đối của tia EC lấy điểm F sao cho EF = EC. Vẽ FH và FK lần lượt vuông góc với đường thẳng AB và AD tại h và K. Chứng min...

thumb up 0
thumb down
Trả lời câu hỏi của tớ là: TRUNG MX

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

3 giờ trước

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
a) Ta có: $\widehat{FHK} = \widehat{FHA} = 90^\circ$ (vì FH vuông góc với AB) $\widehat{FKH} = \widehat{FKD} = 90^\circ$ (vì FK vuông góc với AD) Mà $\widehat{A} = 90^\circ$ (góc của hình chữ nhật ABCD) Do đó, tứ giác AHFK có ba góc vuông nên là hình chữ nhật. b) Ta có: $\widehat{FEC} = \widehat{FEH}$ (đối đỉnh) $\widehat{EFC} = \widehat{EFH}$ (đối đỉnh) Mà EF = EC (theo đề bài) Do đó, tam giác FEC và tam giác FEH bằng nhau (cạnh kề 2 góc bằng nhau) Suy ra: $\widehat{FCE} = \widehat{FHE}$ Mặt khác, ta có: $\widehat{FCE} = \widehat{ABD}$ (so le trong, vì CE // BD) Do đó: $\widehat{FHE} = \widehat{ABD}$ Vậy AF song song với BD (hai góc so le trong bằng nhau). c) Ta có: $\widehat{FCE} = \widehat{FHE}$ (chứng minh ở phần b) Mà $\widehat{FCE} + \widehat{FCK} = 180^\circ$ (kề bù) Do đó: $\widehat{FHE} + \widehat{FCK} = 180^\circ$ Vậy ba điểm E, H, K thẳng hàng (tổng hai góc kề bù bằng 180 độ).
Hãy giúp mọi người biết câu trả lời này thế nào?
1.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
Ciling

3 giờ trước

a)Xét tứ giác $A H F K$ có góc $A H F=90$ (gt), góc $H A K=90$ (gt), góc $A K F=90$ (gt)
$=>$Tứ giác $AHFK$ là hình chữ nhật (dấu hiệu nhận biest hình chữ nhật)
b) Gọi $O$ là giao điểm của $AC$ và $BD$ , $M$ là giao điểm của $HK$ và $AF$

Xét tam giác $CAF$ có $\mathrm{CO}=\mathrm{OA}$ (gt), $\mathrm{CE}=\mathrm{EF}$ (gt)
$=>$ $OE$ là đường trung bịnh của tam giác $CAF$
$=>$ $OE // AF$ (tính chất đường trung bình của tam giác)
hay $BD//AF$
Ta có $O A=O D$ ( $A B C D$ là hình chữ nhật)
$=>$ Tam giác $OAD$ cân tại $O$

$=>$ Góc $OAD =$ góc $ODA$
Mà góc $ODA=$góc $FAD$ (so le trong)
$=>$ góc $OAD =$góc $FAD$
hay góc $CAD=$góc $MAK$(1)
Ta lại có $MA = MK(AHFK$ là hình chũ nhật)
$=>$ Tam giác $MAK$ cân tại $M$
$=>$ Góc $MAK=$ góc $MKA$ (2)
Từ (1) và (2) $=>$ góc $CAD$ = góc $MKA$
hay góc $CAD$ = góc $HKA$
$=> AC // HK$ (có cặp góc so le trong bằng nhau)
c) Xét tam giác $FAC$ có $FM = MA (AHFK$ là hình chữ nhật), $FE = EC$ (gt)
$=> ME$ là đường trung bình của tam giác $FAC$
$=>ME // AC$ (tính chất) (3)
Mà $HK//AC$ (cmt) (4)
Mặt khác $M$ thuộc $A C$ (5)
Từ (3), (4) và (5) $=>$ Ba điểm $\mathrm{H}, \mathrm{K}, \mathrm{E}$ thẳng hàng (đpcm).

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved