trl giúp em ạ câu 1 là tìm khoảng tứ phân vị

rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Apple_H5IAcFBIsXb4jPkUtDCKNoqrSCP2

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

6 giờ trước

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Câu 6 Để tìm vector $\overrightarrow{MP}$, ta sẽ sử dụng các vector đã cho và tính toán theo phương pháp phân tích vector. Trước tiên, ta xác định các vector liên quan: - $\overrightarrow{BC} = \overrightarrow{C} - \overrightarrow{B}$ - $\overrightarrow{AD} = \overrightarrow{D} - \overrightarrow{A}$ Vì M là trung điểm của BC, ta có: \[ \overrightarrow{M} = \frac{\overrightarrow{B} + \overrightarrow{C}}{2} \] Vì P là trung điểm của AD, ta có: \[ \overrightarrow{P} = \frac{\overrightarrow{A} + \overrightarrow{D}}{2} \] Bây giờ, ta tính $\overrightarrow{MP}$: \[ \overrightarrow{MP} = \overrightarrow{P} - \overrightarrow{M} \] \[ \overrightarrow{MP} = \left( \frac{\overrightarrow{A} + \overrightarrow{D}}{2} \right) - \left( \frac{\overrightarrow{B} + \overrightarrow{C}}{2} \right) \] \[ \overrightarrow{MP} = \frac{\overrightarrow{A} + \overrightarrow{D} - \overrightarrow{B} - \overrightarrow{C}}{2} \] Ta biết rằng: \[ \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} = \overrightarrow{b} \] \[ \overrightarrow{AC} = \overrightarrow{C} - \overrightarrow{A} = \overrightarrow{c} \] \[ \overrightarrow{AD} = \overrightarrow{D} - \overrightarrow{A} = \overrightarrow{d} \] Do đó: \[ \overrightarrow{A} = \overrightarrow{A} \] \[ \overrightarrow{B} = \overrightarrow{A} + \overrightarrow{b} \] \[ \overrightarrow{C} = \overrightarrow{A} + \overrightarrow{c} \] \[ \overrightarrow{D} = \overrightarrow{A} + \overrightarrow{d} \] Thay vào biểu thức của $\overrightarrow{MP}$: \[ \overrightarrow{MP} = \frac{(\overrightarrow{A} + \overrightarrow{d}) - (\overrightarrow{A} + \overrightarrow{b}) - (\overrightarrow{A} + \overrightarrow{c})}{2} \] \[ \overrightarrow{MP} = \frac{\overrightarrow{d} - \overrightarrow{b} - \overrightarrow{c}}{2} \] Vậy: \[ \overrightarrow{MP} = \frac{1}{2} (\overrightarrow{d} - \overrightarrow{b} - \overrightarrow{c}) \] Đáp án đúng là: \[ B.~\overrightarrow{MP}=\frac{1}{2}(\overrightarrow{d}-\overrightarrow{b}-\overrightarrow{c}). \] Câu 9 Trong không gian Oxyz, hình chiếu vuông góc của điểm \( M(-1;2;-2) \) trên trục Oz là điểm có tọa độ \((0;0;z)\). Để tìm tọa độ của điểm này, ta giữ nguyên tọa độ z của điểm \( M \) và đặt các tọa độ x và y thành 0. Do đó, hình chiếu vuông góc của điểm \( M(-1;2;-2) \) trên trục Oz là điểm \( F(0;0;-2) \). Vậy đáp án đúng là: \[ C.~F(0;0;-2). \]
Hãy giúp mọi người biết câu trả lời này thế nào?
1.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
BinhAn

2 giờ trước

d) $\displaystyle x^{4} -9x^{3} -x^{2} +9x=x^{3}( x-9) -x( x-9) =( x-9)\left( x^{3} -x\right)$

$\displaystyle =x( x-9)\left( x^{2} -1\right) =x( x-9)( x-1)( x+1)$

e) $\displaystyle x^{2} y+x^{2} -4y-4=x^{2}( y+1) -4( y+1) =( y+1)\left( x^{2} -4\right)$

$\displaystyle =( y+1)( x-2)( x+2)$

f) $\displaystyle x^{2} -4xy+4y^{2} +xz-2yz=( x-2y)^{2} +z( x-2y)$

$\displaystyle =( x-2y)( x-2y+z)$

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved