vẽ hình phần 2 và trả lời phần 2

rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Lyng Kiều

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

30/12/2024

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Bài 5. Bài toán: Tìm giá trị lớn nhất của biểu thức \( A = 2x - x^2 \). Giải: Để tìm giá trị lớn nhất của biểu thức \( A = 2x - x^2 \), ta có thể sử dụng phương pháp biến đổi để hoàn thành bình phương. 1. Biến đổi biểu thức: \[ A = 2x - x^2 \] Ta viết lại biểu thức dưới dạng: \[ A = -(x^2 - 2x) \] 2. Hoàn thành bình phương: Ta thêm và bớt cùng một số vào biểu thức để hoàn thành bình phương: \[ A = -(x^2 - 2x + 1 - 1) = -( (x - 1)^2 - 1 ) = - (x - 1)^2 + 1 \] 3. Tìm giá trị lớn nhất: Biểu thức \( -(x - 1)^2 + 1 \) đạt giá trị lớn nhất khi \( (x - 1)^2 \) đạt giá trị nhỏ nhất. Vì \( (x - 1)^2 \geq 0 \) với mọi \( x \), giá trị nhỏ nhất của \( (x - 1)^2 \) là 0, xảy ra khi \( x = 1 \). Do đó, giá trị lớn nhất của \( A \) là: \[ A_{max} = 1 \] Giá trị này đạt được khi \( x = 1 \). Đáp số: Giá trị lớn nhất của \( A \) là 1, đạt được khi \( x = 1 \).
Hãy giúp mọi người biết câu trả lời này thế nào?
1.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
domtran-anh

30/12/2024

a)
Vì AB,AC à tiếp tuyến của (O)
$\displaystyle \Longrightarrow \begin{cases}
AB\bot BO & \\
AC\bot CO & 
\end{cases} \Longrightarrow \widehat{ABO} =\widehat{ACO} =90^{0}$
Xét tứ giác ABOC, có:
$\displaystyle \widehat{ABO} =\widehat{ACO} =90^{0}$
mà hai góc này ở vị trí đối nhau
⟹ Tứ giác ABOC nội tiếp hay A,B,O,C cùng thuộc 1 đường tròn
b)
Xét $\displaystyle \triangle ABO$ và $\displaystyle \triangle ACO$, có:
$\displaystyle \widehat{ABO} =\widehat{ACO} =90^{0}$
AO chung
OB=OC=R
$\displaystyle  \begin{array}{{>{\displaystyle}l}}
\Longrightarrow \triangle ABO=\triangle ACO\ ( ch-cgv)\\
\Longrightarrow \begin{cases}
\widehat{BAO} =\widehat{CAO} & \\
AB=AC & 
\end{cases}
\end{array}$
Xét $\displaystyle \triangle ABH$ và $\displaystyle \triangle ACH$, có:
$\displaystyle \widehat{BAH} =\widehat{CAH}$
AH chung
AB=AC
$\displaystyle  \begin{array}{{>{\displaystyle}l}}
\Longrightarrow \triangle ABH=\triangle ACH\ ( c-g-c)\\
\Longrightarrow \widehat{AHB} =\widehat{AHC}
\end{array}$
mà hai góc này kề bù
$\displaystyle \Longrightarrow \widehat{AHB} =\widehat{AHC} =90^{0}$ hay BH$\displaystyle \bot $AO
Xét tam giác ABO vuông tại B có đường cao BH, theo hệ thức lượng trong tam giác vuông, có:
$\displaystyle OH.AO=BO^{2} =R^{2}$
Có: 
$\displaystyle  \begin{array}{{>{\displaystyle}l}}
\sin\widehat{OAB} =\frac{OB}{OA}\\
\Longrightarrow \sin^{2}\widehat{OAB} =\frac{OB^{2}}{OA^{2}} =\frac{OH.OA}{OA^{2}} =\frac{OH}{OA} \Longrightarrow OH=OA.\sin^{2}\widehat{OAB}
\end{array}$

Hãy giúp mọi người biết câu trả lời này thế nào?
5.0/5 (1 đánh giá)
thumb up 1
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved