Giải hộ mình câu này với các bạn

rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Nguyễn Thị Thắm

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

04/01/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
14. Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC tại H. So sánh: a) BA và BH; b) DA và DC. a) Xét tam giác ABD và tam giác HBD: - AD = HD (tia phân giác hạ đường cao) - BD chung - $\widehat{ABD} = \widehat{HBD}$ (tia phân giác) Do đó, tam giác ABD = tam giác HBD (cạnh huyền - canh góc vuông). Vậy BA = BH. b) Xét tam giác ABD và tam giác HBD: - AD = HD (tia phân giác hạ đường cao) - BD chung - $\widehat{ABD} = \widehat{HBD}$ (tia phân giác) Do đó, tam giác ABD = tam giác HBD (cạnh huyền - canh góc vuông). Vậy DA = DC. 15. Cho tam giác ABC có $\widehat{A} > 90^\circ$. Lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AC. Chứng minh $DE < DC < BC$. - Trong tam giác ADE, ta có $\widehat{A} > 90^\circ$, nên DE là cạnh bên, do đó $DE < DC$. - Trong tam giác ADC, ta có $\widehat{A} > 90^\circ$, nên DC là cạnh bên, do đó $DC < BC$. Vậy $DE < DC < BC$. 16. Cho tam giác ABC cân tại A. Kẻ tia Bx nằm giữa hai tia BA và BC. Trên tia Bx lấy điểm D nằm ngoài tam giác ABC. Chứng minh $DC < DB$. - Trong tam giác ABD, ta có $\widehat{ABD} < \widehat{ABC}$ (tia Bx nằm giữa hai tia BA và BC), nên DB là cạnh bên, do đó $DC < DB$. 17. Cho tam giác ABC có $AB < AC$. Tia phân giác góc A cắt cạnh BC tại D. Chứng minh $DB < DC$. - Trong tam giác ABD và tam giác ACD, ta có $\widehat{BAD} = \widehat{CAD}$ (tia phân giác), $AB < AC$, nên DB là cạnh bên, do đó $DB < DC$. 18. Cho tam giác ABC có $AB < AC$. Gọi M là trung điểm của BC. Chứng minh $\widehat{MAB} > \widehat{MAC}$. - Trong tam giác ABM và tam giác ACM, ta có BM = CM (M là trung điểm), $AB < AC$, nên $\widehat{MAB} > \widehat{MAC}$.
Hãy giúp mọi người biết câu trả lời này thế nào?
1.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Bài 14

a,
Ta có $\displaystyle \vartriangle ABD=\vartriangle HBD$ (cạnh huyền - góc nhọn)
$\displaystyle \Rightarrow BA=BH$
b,
$\displaystyle  \begin{array}{{>{\displaystyle}l}}
\vartriangle ABD=\vartriangle HBD\\
\Rightarrow DA=DH
\end{array}$
Lại có tam giác DHC vuông tại H
nên $\displaystyle DH< DC$
$\displaystyle \Rightarrow DA< DC$

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved