Làm sao để có câu trả lời hay nhất?
05/01/2025
05/01/2025
Qua S kẻ SE//AB, SE=2AB
Gọi AM$\displaystyle \cap $DC=K
$\displaystyle \begin{array}{{>{\displaystyle}l}}
\Longrightarrow \frac{CK}{AM} =\frac{MC}{MB} =1\\
\Longrightarrow CK=AB=CD\\
\Longrightarrow DK=2CD=2AB=SE
\end{array}$
Ta có: $\displaystyle SE//AB,\ AB//DK\Longrightarrow SE//DK$
mà $\displaystyle SE=DK\ ( =2AB)$
⟹ SEKD là hình bình hành
⟹ KE//SD
⟹ (AEK) là mặt phẳng qua A,M và song song với SD
Gọi AE$\displaystyle \cap $SB=N
$\displaystyle \begin{array}{{>{\displaystyle}l}}
\Longrightarrow \frac{SN}{NB} =\frac{SE}{AB} =\frac{2}{1}\\
\Longrightarrow \frac{SN}{SN+NB} =\frac{2}{2+1}\\
\Longrightarrow \frac{SN}{SB} =\frac{2}{3}
\end{array}$
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
2 giờ trước
Top thành viên trả lời