7 giờ trước
Làm sao để có câu trả lời hay nhất?
7 giờ trước
7 giờ trước
Câu 2:
a) Tập xác định của hàm số
$ x + 2 \neq 0 $
$x \neq -2 $
$ D = \mathbb{R} \setminus \{-2\} $
Đúng
b)
$ y' = \frac{(x^2 + 4x + 5)'(x + 2) - (x^2 + 4x + 5)(x + 2)'}{(x + 2)^2}$
$y' = \frac{(2x + 4)(x + 2) - (x^2 + 4x + 5)}{(x + 2)^2} $
$y' = \frac{2x^2 + 4x + 4x + 8 - x^2 - 4x - 5}{(x + 2)^2}$
$ y' = \frac{x^2 + 4x + 3}{(x + 2)^2} $
$y' = \frac{(x + 1)(x + 3)}{(x + 2)^2}$
Đạo hàm $y'$ sẽ dương khi $(x + 1)(x + 3) > 0$ và $(x + 2)^2 > 0$ (luôn luôn dương ngoại trừ tại $x = -2$).
$(x + 1)(x + 3) > 0$:
$(x + 1) > 0$ và $(x + 3) > 0$: $x > -1$
$(x + 1) < 0$ và $(x + 3) < 0$: $x < -3$
Vậy hàm số đồng biến trên các khoảng $(-\infty, -3)$ và $(-1, \infty)$.
Sai
c) Sai
d,Đúng
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
4 phút trước
3 giờ trước