Giúppp emmmm

rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Trần Đăng

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

14/01/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Câu 59. Để tìm họ nguyên hàm của hàm số \( f(x) = \frac{1}{3x-1} \) trên khoảng \( (-\infty; \frac{1}{3}) \), chúng ta sẽ thực hiện các bước sau: Bước 1: Xác định điều kiện xác định của hàm số. Hàm số \( f(x) = \frac{1}{3x-1} \) xác định khi \( 3x - 1 \neq 0 \). Điều này tương đương với \( x \neq \frac{1}{3} \). Bước 2: Tìm nguyên hàm của hàm số. Ta có: \[ \int \frac{1}{3x-1} \, dx \] Để tính nguyên hàm này, ta sử dụng phương pháp thay đổi biến số. Đặt \( u = 3x - 1 \), thì \( du = 3 \, dx \) hoặc \( dx = \frac{1}{3} \, du \). Thay vào nguyên hàm, ta có: \[ \int \frac{1}{3x-1} \, dx = \int \frac{1}{u} \cdot \frac{1}{3} \, du = \frac{1}{3} \int \frac{1}{u} \, du \] Biết rằng: \[ \int \frac{1}{u} \, du = \ln |u| + C \] Do đó: \[ \frac{1}{3} \int \frac{1}{u} \, du = \frac{1}{3} \ln |u| + C \] Bước 3: Thay trở lại biến số ban đầu. \[ \frac{1}{3} \ln |u| + C = \frac{1}{3} \ln |3x-1| + C \] Vì trên khoảng \( (-\infty; \frac{1}{3}) \), ta có \( 3x - 1 < 0 \), nên \( |3x-1| = -(3x-1) = 1-3x \). Do đó: \[ \frac{1}{3} \ln |3x-1| + C = \frac{1}{3} \ln (1-3x) + C \] Vậy họ nguyên hàm của hàm số \( f(x) = \frac{1}{3x-1} \) trên khoảng \( (-\infty; \frac{1}{3}) \) là: \[ \frac{1}{3} \ln (1-3x) + C \] Đáp án đúng là: C. $\frac{1}{3}\ln(1-3x)+C$.
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 1
thumb down
0 bình luận
Bình luận
avatar
level icon
Tú Trần Thanh hằng

11 giờ trước

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved