Giup minh voi

rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Apple_DgV1uMccbLXYwi04S2AkLmk0ETn1
  • Câu trả lời phải chính xác, đầy đủ dựa trên kiến thức xác thực:
    • ✔ Đối với câu hỏi trắc nghiệm: Đưa đáp án lựa chọn + giải thích lý do chọn đáp án.
    • ✔ Đối với câu hỏi tự luận: Đưa lời giải và đáp án cho câu hỏi.
    • ✔ Đối với câu hỏi trả lời ngắn: Đưa ra đáp án + giải thích lý do.
    • ✔ Chấp nhận sử dụng ảnh do thành viên viết tay, ảnh cần rõ nét, không bị mờ, vỡ ảnh.
  • Sử dụng ngôn ngữ rõ ràng, dễ hiểu.
  • Tránh đưa ra các ý kiến cá nhân mang tính chất chủ quan.
  • Nếu sử dụng thông tin từ nguồn khác, phải trích dẫn nguồn đầy đủ và chính xác.
  • Tuyệt đối không được sao chép các thông tin từ các trang khác, từ AI hoặc chatGPT.
CÂU TRẢ LỜI
avatar
Timi

06/02/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Bài 5.11: Đường thẳng $\Delta$ đi qua điểm $A(1;1;2)$ và song song với đường thẳng $d: \frac{x-3}{2} = \frac{y-1}{1} = \frac{z+5}{3}$. Phương trình tham số: - Vector chỉ phương của đường thẳng $d$ là $\vec{u} = (2, 1, 3)$. - Đường thẳng $\Delta$ cũng có vector chỉ phương là $\vec{u} = (2, 1, 3)$. Phương trình tham số của đường thẳng $\Delta$: \[ \begin{cases} x = 1 + 2t \\ y = 1 + t \\ z = 2 + 3t \end{cases} \] Phương trình chính tắc: Phương trình chính tắc của đường thẳng $\Delta$: \[ \frac{x - 1}{2} = \frac{y - 1}{1} = \frac{z - 2}{3} \] Bài 5.12: Đường thẳng $\Delta$ đi qua điểm $A(2, -1, 4)$ và vuông góc với mặt phẳng $(P): x + 3y - z - 1 = 0$. Phương trình tham số: - Vector pháp tuyến của mặt phẳng $(P)$ là $\vec{n} = (1, 3, -1)$. - Đường thẳng $\Delta$ có vector chỉ phương là $\vec{n} = (1, 3, -1)$. Phương trình tham số của đường thẳng $\Delta$: \[ \begin{cases} x = 2 + t \\ y = -1 + 3t \\ z = 4 - t \end{cases} \] Phương trình chính tắc: Phương trình chính tắc của đường thẳng $\Delta$: \[ \frac{x - 2}{1} = \frac{y + 1}{3} = \frac{z - 4}{-1} \] Bài 5.13: Đường thẳng đi qua hai điểm $A(2, 3, -1)$ và $B(1, -2, 4)$. Phương trình tham số: - Vector chỉ phương của đường thẳng là $\vec{AB} = (1 - 2, -2 - 3, 4 + 1) = (-1, -5, 5)$. Phương trình tham số của đường thẳng: \[ \begin{cases} x = 2 - t \\ y = 3 - 5t \\ z = -1 + 5t \end{cases} \] Phương trình chính tắc: Phương trình chính tắc của đường thẳng: \[ \frac{x - 2}{-1} = \frac{y - 3}{-5} = \frac{z + 1}{5} \]
Hãy giúp mọi người biết câu trả lời này thế nào?
5.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
Kenji Takitsu

06/02/2025

5.11

Đường thẳng $d $ có vectơ chỉ phương là $\vec{u}=(2 ; 1 ; 3)$.
Vì $\Delta / / \mathrm{d}$ nên đường thẳng $\Delta$ nhận $\vec{u}=(2 ; 1 ; 3)$ làm một vectơ chỉ phương.
Đường thẳng $\Delta$ đi qua điểm $\mathrm{A}(1 ; 1 ; 2)$ và có vectơ chỉ phương $\vec{u}=(2 ; 1 ; 3)$ có phương trình tham số là: $\left\{\begin{array}{l}x=1+2 t \\ y=1+t \\ z=2+3 t\end{array}\right.$

và phương trình chính tắc là: $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-2}{3}$

5.12

Mặt phẳng $(P)$ có vectơ pháp tuyến là $\vec{n}=(1 ; 3 ;-1)$
Vì $\Delta \perp(P)$ nên đường thẳng $\Delta$ nhận vectơ pháp tuyến của mặt phẳng $(P)$ làm vectơ chỉ phương.
Đường thẳng $\Delta$ đi qua $A(2 ;-1 ; 4)$, có vectơ chỉ phương $\vec{u}=(1 ; 3 ;-1)$ có phương trình tham số là:

$\left\{\begin{array}{l}x=2+t \\ y=-1+3 t \\ z=4-t\end{array}\right.$

và phương trình chính tắc là: $\frac{x-2}{1}=\frac{y+1}{3}=\frac{z-4}{-1}$

5.13

Có $\overrightarrow{A B}=(-1 ;-5 ; 5)$

Đường thẳng $\Delta $ đi qua hai điểm $\mathrm{A}(2 ; 3 ;-1)$ và nhận $\overrightarrow{A B}=(-1 ;-5 ; 5)$ làm vectơ chỉ phương có phương trình tham số là:

$\left\{\begin{array}{l}x=2-t \\ y=3-5 t \\ z=-1+5 t\end{array}\right.$

và phương trình chính tắc là: $\frac{x-2}{-1}=\frac{y-3}{-5}=\frac{z+1}{5}$

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved