Giải hộ mình câu này với các bạn

rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Vũ Minh Trí

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

04/03/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Để tìm giá trị nhỏ nhất của biểu thức \( A = \frac{3x^2 - 8x + 6}{x^2 - 2x + 1} \), ta thực hiện các bước sau: Bước 1: Xác định điều kiện xác định (ĐKXĐ) Biểu thức \( A = \frac{3x^2 - 8x + 6}{x^2 - 2x + 1} \) có mẫu số là \( x^2 - 2x + 1 \). Ta cần đảm bảo mẫu số không bằng 0: \[ x^2 - 2x + 1 \neq 0 \] \[ (x - 1)^2 \neq 0 \] \[ x \neq 1 \] Vậy ĐKXĐ là \( x \neq 1 \). Bước 2: Rút gọn biểu thức Ta có thể viết lại biểu thức \( A \) dưới dạng: \[ A = \frac{3x^2 - 8x + 6}{(x - 1)^2} \] Bước 3: Tìm giá trị nhỏ nhất của biểu thức Để tìm giá trị nhỏ nhất của \( A \), ta sẽ biến đổi biểu thức \( A \) thành dạng tổng của các bình phương và một hằng số. Ta có: \[ A = \frac{3x^2 - 8x + 6}{(x - 1)^2} \] Ta sẽ thực hiện phép chia \( 3x^2 - 8x + 6 \) cho \( (x - 1)^2 \): \[ 3x^2 - 8x + 6 = 3(x^2 - 2x + 1) - 2x + 3 \] \[ = 3(x - 1)^2 - 2x + 3 \] Do đó: \[ A = \frac{3(x - 1)^2 - 2x + 3}{(x - 1)^2} \] \[ = 3 - \frac{2x - 3}{(x - 1)^2} \] Bây giờ, ta cần tìm giá trị nhỏ nhất của biểu thức \( 3 - \frac{2x - 3}{(x - 1)^2} \). Ta thấy rằng \( \frac{2x - 3}{(x - 1)^2} \) là một phân thức có mẫu số dương (vì \( (x - 1)^2 > 0 \) khi \( x \neq 1 \)). Do đó, để \( A \) đạt giá trị nhỏ nhất, ta cần \( \frac{2x - 3}{(x - 1)^2} \) đạt giá trị lớn nhất. Xét biểu thức \( \frac{2x - 3}{(x - 1)^2} \): - Khi \( x \to 1 \), \( \frac{2x - 3}{(x - 1)^2} \to -\infty \). - Khi \( x \to \infty \) hoặc \( x \to -\infty \), \( \frac{2x - 3}{(x - 1)^2} \to 0 \). Do đó, giá trị lớn nhất của \( \frac{2x - 3}{(x - 1)^2} \) là 0, xảy ra khi \( x \to \infty \) hoặc \( x \to -\infty \). Vậy giá trị nhỏ nhất của \( A \) là: \[ A_{min} = 3 - 0 = 3 \] Đáp số: Giá trị nhỏ nhất của biểu thức \( A \) là 3, đạt được khi \( x \to \infty \) hoặc \( x \to -\infty \).
Hãy giúp mọi người biết câu trả lời này thế nào?
1.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
Kotoha Yan

04/03/2025

ĐKXĐ: $\displaystyle x\neq 1$
Xét hiệu:
$\displaystyle  \begin{array}{{>{\displaystyle}l}}
A-2=\frac{3x^{2} -8x+6}{x^{2} -2x+1} -2\\
=\frac{3x^{2} -8x+6-2x^{2} +4x-2}{x^{2} -2x+1}\\
=\frac{x^{2} -4x+4}{x^{2} -2x+1} =\frac{( x-2)^{2}}{( x-1)^{2}}
\end{array}$
Với $\displaystyle x\neq 1$ ta có: $\displaystyle \begin{cases}
( x-2)^{2} \geqslant 0 & \\
( x-1)^{2}  >0 & 
\end{cases} \Longrightarrow \frac{( x-2)^{2}}{( x-1)^{2}} \geqslant 0$
$\displaystyle \Longrightarrow A-2\geqslant 0\Longrightarrow A\geqslant 2$
Dấu bằng xảy ra khi và chỉ khi: $\displaystyle \begin{cases}
x-2=0 & \\
x\neq 1 & 
\end{cases} \Longrightarrow x=2$

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved