Bài 35. Cho đường tròn (O) đường kính AB=2R và một điểm M di chuyển trên nửa đường tròn. Người ta vẽ đường tròn (E) tiếp xúc với (O) tại M và tiếp xúc với AB tại N. Đường tròn này cắt MA,MB lần lượt tạ...

ADS
thumb up 0
thumb down
Trả lời câu hỏi của Sabo(サボ)
  • Câu trả lời phải chính xác, đầy đủ dựa trên kiến thức xác thực:
    • ✔ Đối với câu hỏi trắc nghiệm: Đưa đáp án lựa chọn + giải thích lý do chọn đáp án.
    • ✔ Đối với câu hỏi tự luận: Đưa lời giải và đáp án cho câu hỏi.
    • ✔ Đối với câu hỏi trả lời ngắn: Đưa ra đáp án + giải thích lý do.
    • ✔ Chấp nhận sử dụng ảnh do thành viên viết tay, ảnh cần rõ nét, không bị mờ, vỡ ảnh.
  • Sử dụng ngôn ngữ rõ ràng, dễ hiểu.
  • Tránh đưa ra các ý kiến cá nhân mang tính chất chủ quan.
  • Nếu sử dụng thông tin từ nguồn khác, phải trích dẫn nguồn đầy đủ và chính xác.
  • Tuyệt đối không được sao chép các thông tin từ các trang khác, từ AI hoặc chatGPT.
ADS
CÂU TRẢ LỜI
avatar
Timi

28/05/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Bài 35. a. Chứng minh CD // AB: - Vì (E) tiếp xúc với (O) tại M nên OM vuông góc với đường kính của (E) đi qua M. - Mặt khác, (E) tiếp xúc với AB tại N nên ON vuông góc với đường kính của (E) đi qua N. - Do đó, ON song song với OM, suy ra ON song song với AB. - Vì ON song song với AB và ON vuông góc với đường kính của (E) đi qua N, nên đường kính của (E) đi qua N vuông góc với AB. - Kết hợp với OM vuông góc với đường kính của (E) đi qua M, ta có đường kính của (E) đi qua M vuông góc với ON. - Từ đó, ta suy ra CD // AB. b. Chứng minh MN là tia phân giác của góc AMB và đường thẳng MN đi qua một điểm K cố định: - Vì (E) tiếp xúc với (O) tại M và tiếp xúc với AB tại N, nên ON = OM. - Do đó, tam giác OMN là tam giác cân tại O, suy ra góc OMN = góc ONM. - Mặt khác, vì ON song song với AB, nên góc ONM = góc AMN (góc so le trong). - Từ đó, ta suy ra góc OMN = góc AMN, tức là MN là tia phân giác của góc AMB. - Vì ON = OM và ON song song với AB, nên điểm N nằm trên đường trung trực của đoạn thẳng OM. - Do đó, đường thẳng MN đi qua tâm O của (O), tức là đi qua điểm K cố định là tâm O. c. Chứng minh tích KM.KN cố định: - Vì MN là tia phân giác của góc AMB và đi qua tâm O của (O), nên K là trung điểm của đoạn thẳng ON. - Do đó, KN = KO = R/2. - Mặt khác, vì ON = OM và ON song song với AB, nên ON = R. - Từ đó, ta suy ra KM = ON - KN = R - R/2 = R/2. - Vậy tích KM.KN = (R/2) (R/2) = R^2/4, là một hằng số cố định. d. Gọi giao điểm của các tia CN, DN với KB, KA lần lượt là C′, D′. Tìm vị trí của M để chu vi tam giác NC′D′ đạt giá trị nhỏ nhất có thể được: - Vì CD // AB, nên tam giác NC′D′ đồng dạng với tam giác NAB. - Chu vi tam giác NC′D′ = NC′ + ND′ + C′D′. - Vì NC′ = NA (ND′ / NB) và ND′ = NB (NC′ / NA), nên NC′ + ND′ = NA (ND′ / NB) + NB (NC′ / NA). - Mặt khác, vì C′D′ = AB (ND′ / NB) (NC′ / NA), nên chu vi tam giác NC′D′ = NA (ND′ / NB) + NB (NC′ / NA) + AB (ND′ / NB) (NC′ / NA). - Để chu vi tam giác NC′D′ đạt giá trị nhỏ nhất, ta cần tối thiểu hóa tổng NA (ND′ / NB) + NB (NC′ / NA) + AB (ND′ / NB) (NC′ / NA). - Vì NA + NB = AB, nên ta cần tối thiểu hóa tổng NA (ND′ / NB) + NB (NC′ / NA) + AB (ND′ / NB) (NC′ / NA) khi NA = NB = AB/2. - Từ đó, ta suy ra M nằm ở trung điểm của cung AB, tức là M là điểm đối xứng với O qua AB.
Hãy giúp mọi người biết câu trả lời này thế nào?
2.0/5 (1 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi