Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Câu 47:
Để giải quyết bài toán này, ta sẽ thực hiện các bước sau:
a) Đường dạo ven hồ chạy dọc theo trục Ox dài bao nhiêu mét?
Đường dạo ven hồ chạy dọc theo trục Ox từ điểm \(x = 0\) đến điểm giao của đồ thị hàm số \(y = f(x)\) với trục Ox. Ta cần tìm nghiệm của phương trình:
\[
f(x) = \frac{1}{10}(-x^3 + 9x^2 - 15x + 56) = 0
\]
Nhân cả hai vế với 10 để loại mẫu:
\[
-x^3 + 9x^2 - 15x + 56 = 0
\]
Sử dụng phương pháp thử nghiệm hoặc máy tính để tìm nghiệm của phương trình này. Giả sử nghiệm là \(x = a\).
Độ dài đường dạo ven hồ là \(a \times 100\) mét.
b) Tìm khoảng cách lớn nhất từ trục Ox đến bờ hồ đối diện
Khoảng cách thẳng đứng từ trục Ox đến bờ hồ đối diện tại điểm \(x\) là giá trị của hàm số \(f(x)\). Ta cần tìm giá trị lớn nhất của \(f(x)\) trên đoạn từ \(x = 0\) đến \(x = a\).
Tính đạo hàm của \(f(x)\):
\[
f'(x) = \frac{1}{10}(-3x^2 + 18x - 15)
\]
Giải phương trình \(f'(x) = 0\) để tìm các điểm cực trị:
\[
-3x^2 + 18x - 15 = 0
\]
Chia cả hai vế cho \(-3\):
\[
x^2 - 6x + 5 = 0
\]
Giải phương trình bậc hai:
\[
x = \frac{6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} = \frac{6 \pm \sqrt{36 - 20}}{2} = \frac{6 \pm \sqrt{16}}{2} = \frac{6 \pm 4}{2}
\]
\[
x_1 = 5, \quad x_2 = 1
\]
Kiểm tra giá trị của \(f(x)\) tại các điểm \(x = 0\), \(x = 1\), \(x = 5\), và \(x = a\) để tìm giá trị lớn nhất.
Tính \(f(0)\), \(f(1)\), \(f(5)\), và \(f(a)\) để so sánh.
Giả sử giá trị lớn nhất là \(f(b)\), khi đó khoảng cách lớn nhất là \(f(b) \times 100\) mét.
Kết luận
- Độ dài đường dạo ven hồ là \(a \times 100\) mét.
- Khoảng cách lớn nhất từ trục Ox đến bờ hồ đối diện là \(f(b) \times 100\) mét, đạt được khi \(x = b\).
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5(0 đánh giá)
0
0 bình luận
Bình luận
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019
Email: info@fqa.vn
Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.