Lý thuyết
* Tìm ước chung của hai số a và b
Bước 1: Viết tập hợp các ước của a và của b: Ư(a), Ư(b)
Bước 2: Tìm những phần tử chung của Ư(a) và Ư(b).
* Tìm ƯCLN
Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
Tìm bội chung của hai số a và b
Bước 1: Viết tập hợp các bội B(a) của a và các bội B(b) của b.
Bước 2: Tìm những phần tử chung của B(a) và B(b).
* Tìm BCNN:
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
Chú ý: Ước của ƯCLN (a,b) là ƯC(a,b)
Bội của BCNN (a,b) là BC(a,b)
Tích của ƯCLN(a,b) và BCNN(a,b) bằng tích a.b
Bài tập
Bài 1:
Viết tập hợp:
a) ƯC(32,24)
b) BC(12,15)
Bài 2:
Tìm:
a) ƯCLN(24,54). Từ đó chỉ ra các ƯC(24,54)
b) BCNN(24,18). Từ đó chỉ ra các BC(24,18)
Bài 3:
Tìm ƯCLN(24,16,28) và BCNN(24,16,28)
Bài 4
Cho ƯCLN(a,b) = 33 . 53; BCNN(a,b) = 22 . 34 . 55
Tìm a, b dương biết rằng a = 3.b
Lời giải chi tiết:
Bài 1:
Viết tập hợp:
a) ƯC(32,24)
b) BC(12,15)
Phương pháp
a) Bước 1: Viết tập hợp các ước của a và của b: Ư(a), Ư(b)
Bước 2: Tìm những phần tử chung của Ư(a) và Ư(b).
b) Bước 1: Viết tập hợp các bội B(a) của a và các bội B(b) của b.
Bước 2: Tìm những phần tử chung của B(a) và B(b).
Lời giải
a) Ta có:
Ư(32) = {1;2;4;8;16;32}
Ư(24) = {1;2;3;4;6;8;12;24}
Do đó, ƯC(32,24) = {1;2;4;8}
b) Ta có:
B(12) = {0;12;24;36;48;60;72;84;96;108;120;132;…}
B(15) = {0;15;30;45;60;75;90; 105;120; 135;…}
Do đó, BC(12,15) ={0; 60; 120;…}
Bài 2:
Tìm:
a) ƯCLN(24,54). Từ đó chỉ ra các ƯC(24,54)
b) BCNN(24,18). Từ đó chỉ ra các BC(24,18)
Phương pháp
a) * Tìm ƯCLN
Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
* Ước của ƯCLN (a,b) là ƯC(a,b)
b) * Tìm BCNN:
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
* Bội của BCNN (a,b) là BC(a,b)
Lời giải
a) Ta có:
24 = 23 . 3
54 = 2. 33
Thừa số nguyên tố chung là 2 và 3. Số mũ nhỏ nhất của 2 và 3 lần lượt là 1 và 1.
\( \Rightarrow \) ƯCLN(24,54) = 2 . 3 = 6
Ta được: ƯC(24,54) = Ư(6) = {1;2;3;6}
b) Ta có:
24 = 23 . 3
18 = 2 . 32
Thừa số nguyên tố chung là 2 và 3, không có thừa số nguyên tố riêng. Số mũ lớn nhất của 2 và 3 lần lượt là 3 và 2.
\( \Rightarrow \) BCNN(24,18) = 23 . 32 = 72.
Ta được: BC(24,18) = B(72) = {0;72;144;…}
Bài 3:
Tìm ƯCLN(24,16,28) và BCNN(24,16,28)
Phương pháp
* Tìm ƯCLN
Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
* Ước của ƯCLN (a,b) là ƯC(a,b)
* Tìm BCNN:
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
Lời giải
Ta có:
24 = 23 . 3
16 = 24
28 = 22 . 7
* Thừa số nguyên tố chung là 2. Số mũ nhỏ nhất của 2 là 2.
\( \Rightarrow \) ƯCLN (24,16,28) = 22 = 4.
* Thừa số nguyên tố chung là 2, thừa số nguyên tố riêng là 3 và 7. Số mũ lớn nhất của 2 là 4; của 3 là 1, của 7 là 1.
\( \Rightarrow \) BCNN(24,16,28) = 24 . 3 . 7 = 336.
Bài 4
Cho ƯCLN(a,b) = 33 . 53; BCNN(a,b) = 22 . 34 . 55
Tìm a, b dương biết rằng a = 3.b
Phương pháp
Tích của ƯCLN(a,b) và BCNN(a,b) bằng tích a.b
Kết hợp dữ kiện a = 3.b để tìm a, b
Lời giải
Ta có:
a.b = ƯCLN(a,b) . BCNN(a,b)
= 33 . 53 . 22 . 34 . 55
= 22 . 37 . 58
Mà a = 3.b nên ta có:
3.b.b = 22 . 37 . 58
Hay 3b2 = 22 . 37 . 58
Nên b2 = 22 . 36 . 58 = (2 . 33 . 54)2
Do đó, b = 2 . 33 . 54
\( \Rightarrow \) a = 3 . b = 3 . 2 . 33 . 54 = 2 . 34 . 54.
Vậy a = 2 . 34 . 54; b = 2 . 33 . 54
PHẦN 4: NĂNG LƯỢNG VÀ SỰ BIẾN ĐỔI
Chủ đề 4: ƯỚC MƠ HÒA BÌNH
Bài 7: Gia đình yêu thương
Chủ đề 2. CHĂM SÓC CUỘC SỐNG CÁ NHÂN
Bài tổng kết: Các hình thức mĩ thuật
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
Tài liệu Dạy - học Toán Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Chân trời sáng tạo Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6