Đề thi vào 10 môn Toán Hà Tĩnh năm 2020

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
Lời giải
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
Lời giải

Đề bài

Câu 1 (2 điểm): 

Rút gọn các biểu thức sau:

a)

b) với

Câu 2 (2,5 điểm): 

a) Giải phương trình

b) Trong mặt phẳng tọa độ , cho đường thẳng đi qua điểm và song song với đường thẳng Tìm các số .

Câu 3 (1,5 điểm):  

Trong quý I, cả hai tổ A và B sản xuất được 610 sản phẩm. Trong quý II, số sản phẩm tổ A tăng thêm 10%, tổ B tăng thêm 14% so với quý I, do đó cả hai tổ sản xuất được 681 sản phẩm. Hỏi trong quý I, mỗi tổ sản xuất được bao nhiêu sản phẩm?

Câu 4 (1 điểm): 

Cho tam giác vuông tại , có đường cao (thuộc ). Biết độ dài đoạn bằng , đoạn bằng . Tính độ dài các cạnh .

Câu 5 (2 điểm): 

Cho đường tròn tâm O, đường kính MN, điểm I thay đổi trên đoạn OM (I khác M). Đường thẳng qua I vuông góc với MN cắt (O) tại P và Q. Trên tia đối của tia NM lấy điểm S cố định. Đoạn PS cắt (O) tại E, gọi H là giao điểm của EQ và MN.

a) Chứng minh tam giác SPN và tam giác SME đồng dạng.

b) Chứng minh độ dài OH không phụ thuộc vào vị trí điểm I.

Câu 6 (1 điểm): 

Cho là các số thực dương thỏa mãn

Tìm giá trị nhỏ nhất của biểu thức:   

Lời giải

Câu 1 - Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Phương pháp:

a) Đặt nhân tử chung, rút gọn biểu thức đã cho.

b) Quy đồng mẫu các phân thức, rút gọn biểu thức đã cho.

Cách giải:

Rút gọn các biểu thức sau:

a)

Ta có:

 

b) với

Ta có:

Vậy với .

Câu 2 - Ôn tập tổng hợp chương 2, 3, 4 - Đại số

Phương pháp:

a) Đặt ta có phương trình:

Giải phương trình tìm ẩn Đối chiếu với điều kiện để loại nghiệm rồi tìm

b) Hai đường thẳng song song với nhau

Thay tọa độ điểm vào công thức hàm số .

Từ đó giải hệ phương trình tìm

Cách giải:

a) Giải phương trình

Đặt ta có phương trình:

 

Với

Vậy phương trình đã cho có nghiệm

b) Trong mặt phẳng tọa độ , cho đường thẳng đi qua điểm và song song với đường thẳng Tìm các số .

Vì hai đường thẳng song song với nhau nên

Suy ra đường thẳng

Vì đường thẳng đi qua điểm nên thay vào hàm số ta được:

(thỏa mãn)

Vậy

Câu 3 - Giải bài toán bằng cách lập hệ phương trình

Phương pháp:

Gọi số sản phẩm tổ A và tổ B sản xuất được trong quý I lần lượt là (sản phẩm)

Biểu diễn các đại lượng chưa biết theo các ẩn vừa gọi rồi giải hệ phương trình.

Đối chiếu với điều kiện rồi kết luận.

Cách giải:

Trong quý I, cả hai tổ A và B sản xuất được 610 sản phẩm. Trong quý II, số sản phẩm tổ A tăng thêm 10%, tổ B tăng thêm 14% so với quý I, do đó cả hai tổ sản xuất được 681 sản phẩm. Hỏi trong quý I, mỗi tổ sản xuất được bao nhiêu sản phẩm?

Gọi số sản phẩm tổ A và tổ B sản xuất được trong quý I lần lượt là (sản phẩm)

Vì trong quý I, cả hai tổ A và B sản xuất được 610 sản phẩm nên ta có phương trình (sản phẩm)

Trong quý II:

Tổ A tăng thêm 10% so với quý I nên tổ A sản xuất được sản phẩm

Tổ B tăng thêm 14% so với quý I nên tổ B sản xuất được sản phẩm

Và cả 2 tổ sản xuất được 681 sản phẩm nên ta có phương trình (sản phẩm)

Ta có hệ phương trình:

Vậy trong quý I, tổ A sản xuất được 360 sản phẩm, tổ B sản xuất được 250 sản phẩm.

Câu 4 - Một số hệ thức về cạnh và đường cao trong tam giác vuông

Phương pháp:

Sử dụng định lý Pitago và các hệ thức lượng trong tam giác vuông để tính.

Cách giải:

Cho tam giác vuông tại , có đường cao (thuộc ). Biết độ dài đoạn bằng , đoạn bằng . Tính độ dài các cạnh .

 

Xét tam giác vuông tại có đường cao theo hệ thức lượng trong tam giác vuông ta có:

cm

Xét tam giác vuông tại , theo định lý Pytago ta có:

Vậy

Câu 5 - Ôn tập chương 3: Góc với đường tròn

Cách giải:

Cho đường tròn tâm O, đường kính MN, điểm I thay đổi trên đoạn OM (I khác M). Đường thẳng qua I vuông góc với MN cắt (O) tại P và Q. Trên tia đối của tia NM lấy điểm S cố định. Đoạn PS cắt (O) tại E, gọi H là giao điểm của EQ và MN.

 

a) Chứng minh tam giác SPN và tam giác SME đồng dạng.

Ta có: bốn điểm cùng thuộc nên tứ giác nội tiếp.

(góc nội tiếp cùng chắn cung )

Xét có:

chung

(cmt)

(đpcm)

b) Chứng minh độ dài OH không phụ thuộc vào vị trí điểm I.

Từ câu a,  (cạnh tương ứng)

Ta có:

Xét có:

(cạnh tương ứng)

(2)

Từ (1) và (2) suy ra

cố định nên không đổi

không đổi

không đổi.

Vậy độ dài không phụ thuộc vào vị trí điểm . (đpcm)

Câu 6  - Bất đẳng thức

Cách giải:

Ta có:

Áp dụng các BĐT cơ bản ta có:

khi .

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi