Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Đề bài
Trong không gian cho ba đoạn thẳng \(AB, BC, CD\) sao cho \(AB \bot BC\,\,,\,\,BC \bot CD\,\,,\,\,CD \bot AB\) . Chứng minh rằng có mặt cầu đi qua bốn điểm \(A, B, C, D\). Tính bán kính mặt cầu đó nếu \(AB = a\,\,,\,\,BC = b\,\,,\,\,CD = c\) .
Lời giải chi tiết
Vì \(AB \bot BC\) và \(AB \bot CD\) nên \(AB \bot \left( {BCD} \right)\). Suy ra \(AB \bot BD\)
Vì \(CD \bot BC\) và \(CD \bot AB\) nên \(CD \bot \left( {ABC} \right) \Rightarrow CD \bot AC\)
Gọi \(I\) là trung điểm \(AD\), ta có \(IB = IA = ID = IC\) nên các điểm \(A, B, C, D\) cùng nằm trên mặt cầu đường kính \(AD\).
Mặt khác ta có: \(A{D^2} = A{B^2} + B{D^2} \) \(= A{B^2} + B{C^2} + C{D^2}\) \( = {a^2} + {b^2} + {c^2}\)
\( \Rightarrow AD = \sqrt {{a^2} + {b^2} + {c^2}} \)
Do đó bán kính mặt cầu là \(R = {1 \over 2}AD = {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \)
CHƯƠNG II. DAO ĐỘNG CƠ
Chương 3. Di truyền học quần thể
Chương 4. Polime và vật liệu polime
Chương 7. Hạt nhân nguyên tử
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Ngữ Văn lớp 12