Bài 10 trang 111 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Trên các tia AA’, AB, AD (có chung gốc A) lần lượt lấy các điểm M, N, P khác A sao cho AM = m, AN = n và AP = p.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tìm sự liên hệ giữa m, n và p sao cho mp(MNP) đi qua đỉnh C' của hình lập phương.

Lời giải chi tiết:

Ta chọn Oxyz sao cho O trùng A, các tia Ox, Oy và Oz lần lượt chứa các điểm B, D, A’. Khi đó ta có \(A\left( {0;0;0} \right)\,\,;\,\,B\left( {1;0;0} \right)\,\,;\) \(D\left( {0;1;0} \right)\,\,;\,\,A'\left( {0;0;1} \right)\,;\,\,C'\left( {1;1;1} \right)\,\,;\) \(\,M\left( {0;0;m} \right)\,\,;\,\,N\left( {n;0;0} \right)\,\,;\,\,P\left( {0;p;0} \right)\)
Mặt phẳng (MNP) có phương trình đoạn chắn

\({x \over n} + {y \over p} + {z \over m} = 1\)

Nên mặt phẳng đó đi qua đỉnh C’ khi và chỉ khi:

\({1 \over n} + {1 \over p} + {1 \over m} = 1\,\,\left( * \right)\)

LG b

Trong trường hợp mp(MNP) luôn đi qua C’, hãy tìm thể tích bé nhất của tứ diện AMNP. Khi đó tứ diện AMNP có tính chất gì?

Lời giải chi tiết:

Thể tích tứ diện AMNP là \(V = {1 \over 6}AM.AN.AP = {1 \over 6}mnp\) (trong đó m, n, p là các số dương thỏa mãn điều kiện (*)).

Áp dụng bất đẳng thức Cô-si cho ba số dương, ta có:
\({1 \over n} + {1 \over p} + {1 \over m} \ge 3\root 3 \of {{1 \over {mnp}}}  \) \(\Leftrightarrow {1 \over {mnp}} \le {1 \over {{3^3}}} \) \(\Leftrightarrow mnp \ge 27.\)

\( \Rightarrow V = \frac{1}{6}mnp \ge \frac{{27}}{6} = \frac{9}{2}\)
Dấu “=” xảy ra khi và chỉ khi \({1 \over m} = {1 \over n} = {1 \over p} = {1 \over 3}\) \( \Leftrightarrow m = n = p = 3.\)

Vậy giá trị nhỏ nhất của thể tích V là \({{9} \over 2}\), khi đó hình chóp AMNP là hình chóp đều.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved