Bài 10 trang 176 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho tam giác ABC cân tại A có \(\widehat A = {20^0},\)   vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh rằng :

a) Tia AD là phân giác góc BAC.

b) AM = BC.

Lời giải chi tiết

a)Xét tam giác ADB và ADC ta có:

AD là cạnh chung

AB = AC (tam giác ABC cân tại A)

DB = DC (tam giác DBC đều)

Do đó: \(\Delta ADB = \Delta ADC(c.c.c) \Rightarrow \widehat {DAB} = \widehat {DAC}\)

Vậy AD là tia phân giác của góc BAC.

b) Ta có: \(\widehat {BAD} = \widehat {CAD} = {{\widehat {BAC}} \over 2} = {{{{20}^0}} \over 2} = {10^0}\)   (AD là tia phân giác của góc BAC)

Tam giác ABC có: \(\eqalign{  & \widehat {ABC} + \widehat {BAC} + \widehat {ACB} = {180^0}  \cr  &  \Leftrightarrow \widehat {ABC} + {20^0} + \widehat {ABC} = {180^0}  \cr  &  \Rightarrow 2\widehat {ABC} = {180^0} - {20^0} = {160^0}  \cr  &  \Rightarrow \widehat {ABC} = {80^0} \cr} \)

Mà \(\widehat {ABC} = \widehat {ABD} + \widehat {DBC}\)

Nên \(\widehat {ABD} + \widehat {DBC} = {80^0} \Rightarrow \widehat {ABD} + {60^0} = {80^0} \Rightarrow \widehat {ABD} = {20^0}.\)

Ta có: \(\widehat {ABM} = \widehat {MBD} = {{\widehat {ABD}} \over 2}\)   (BM là tia phân giác của góc ABD)

\(\Rightarrow \widehat {ABM} = \widehat {MBD} = {{{{20}^0}} \over 2} = {10^0}\)

Xét tam giác AMB và BDA có:

\(\widehat {ABM} = \widehat {BAD}( = {10^0})\)

AB là cạnh chung

\(\widehat {MAB} = \widehat {DBA}( = {20^0})\)

Do đó: \(\Delta AMB = \Delta BDA(g.c.g) \Rightarrow AM = BD.\)

Mà BD = BC (tam giác BCD đều) nên AM = BC.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved