CHƯƠNG IV. HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

Bài 10 trang 66 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho phương trình bậc hai với m là tham số \({x^2} + 2x + m = 0\)

a) Tìm m để phương trình có nghiệm

b) Tìm m để phương trình có hai nghiệm cùng âm.

c) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x1 – 2x2 = 5.

Phương pháp giải - Xem chi tiết

a) Phương trình có nghiệm khi \(\Delta  \ge 0\left( {\Delta ' \ge 0} \right)\)

b) Phương trình có hai nghiệm cùng âm khi \(\left\{ \begin{array}{l}\Delta  \ge 0\\S < 0\\P > 0\end{array} \right.\)

c) Áp dụng hệ thức Viet cho phương trình bậc hai \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\) sau đó kết hợp với yêu cầu bài toán để tìm ra m.

Lời giải chi tiết

\({x^2} + 2x + m = 0\)

a) Phương trình có nghiệm khi \(\Delta ' \ge 0 \Leftrightarrow 1 - m \ge 0 \Leftrightarrow m \le 1\)

b) Với \(m \le 1\) thì phương trình có 2 nghiệm

Phương trình có 2 nghiệm cùng âm khi \(\left\{ \begin{array}{l}{x_1} + {x_2} < 0\\{x_1}.{x_2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2 < 0\\m > 0\end{array} \right. \Leftrightarrow m > 0\)

Kết hợp với điều kiện phương trình có 2 nghiệm ta được: \(0 < m \le 1\)

c)

Áp dụng hệ thức Viet cho phương trình bậc hai \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\,\,\,\left( 2 \right)\\{x_1}{x_2} = m\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\)

Kết hợp \({x_1} - 2{x_2} = 5 \Leftrightarrow {x_1} = 5 + 2{x_2}\)

Thay vào (2) ta được:

\(5 + 2{x_2} + {x_2} =  - 2\)

\(\Leftrightarrow 3{x_2} =  - 7\)

\(\Leftrightarrow {x_2} =  - \dfrac{7}{3}\)

\(\Rightarrow {x_1} = 5 + 2.\left( { - \dfrac{7}{3}} \right) = \dfrac{1}{3}\)

Thay x1, x2  vào (3) ta được: \(\dfrac{1}{3}.\left( { - \dfrac{7}{3}} \right) = m \Leftrightarrow m = \dfrac{{ - 7}}{9}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved