GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 14 Trang 153 SGK Đại số và Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Một vật chuyển động với vận tốc \(v\left( t \right) = 1 - 2\sin 2t\,\,\left( {m/s} \right)\). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm \(t = 0\) (s) đến thời điểm \(t = {{3\pi } \over 4}\,\left( s \right)\).

Lời giải chi tiết:

Quãng đường vật di chuyển trong thời gian từ \(t=0\) (s) đến \(t = {{3\pi } \over 4}\left( s \right)\) là: \(S = \int\limits_0^{{{3\pi } \over 4}} {\left( {1 - 2\sin 2t} \right)dt}  \) \(= \left( {t + \cos 2t} \right)\mathop |\nolimits_0^{{{3\pi } \over 4}}  = {{3\pi } \over 4} - 1\left( m \right)\)

LG b

Một vật chuyển động chậm dần với vận tốc \(v\left( t \right) = 160 - 10t\,\left( {m/s} \right)\). Tính quãng đường mà vật di chuyển được từ thời điểm t=0 đến thời điểm mà vật dừng lại. 

Lời giải chi tiết:

Gọi \({t_0}\) là thời điểm vật dừng lại, khi đó:

\(v\left( {{t_0}} \right) = 0 \Leftrightarrow 160 - 10{t_0} = 0 \) \(\Leftrightarrow {t_0} = 16.\)

Quãng đường vật di chuyển từ \(t=0\) đến \(t=16\) là

\(S = \int\limits_0^{16} {\left( {160 - 10t} \right)dt} \) \(= \left( {160t - 5{t^2}} \right)\mathop |\nolimits_0^6  = 1280.\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved