GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài tập trắc nghiệm khách quan chương II

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 98
Bài 99
Bài 100
Bài 101
Bài 102
Bài 103
Bài 104
Bài 105
Bài 106
Bài 107
Bài 108
Bài 109
Bài 110

Trong mỗi bài tập dưới dây, hãy chọn một phương án cho để được khẳng định đúng.

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 98
Bài 99
Bài 100
Bài 101
Bài 102
Bài 103
Bài 104
Bài 105
Bài 106
Bài 107
Bài 108
Bài 109
Bài 110

Bài 98

Giá trị biểu thức \({\log _2}36 - {\log _2}144\) bằng

(A) – 4 ;                      (B) 4 ;

(C) – 2 ;                      (D) 2.

Lời giải chi tiết:

\({\log _2}36 - {\log _2}144 = {\log _2}{{36} \over {144}} \)

\(= {\log _2}{1 \over 4} = {\log _2}{2^{ - 2}} =  - 2\)

Chọn (C).

Bài 99

Biết \({\log _6}\sqrt a  = 2\) thì \({\log _6}a\) bằng:

(A) 36 ;                      (B) 108 ;

(C) 6 ;                        (D) 4.

Lời giải chi tiết:

\({\log _6}\sqrt a  = 2 \Leftrightarrow {\log _6}{a^{{1 \over 2}}} = 2 \)

\( \Leftrightarrow \frac{1}{2}{\log _6}a = 2\Leftrightarrow {\log _6}a = 4\)

Chọn (D)

Bài 100

Tập các số x thỏa mãn \({\log _{0,4}}\left( {x - 4} \right) + 1 \ge 0\) là:

\(\left( A \right)\,\left( {4; + \infty } \right)\)             \(\left( B \right)\,\left( {4;6,5} \right)\)

\(\left( C \right)\,\left( { - \infty ;6,5} \right)\)             \(\left( D \right)\,\left[ {6,5; + \infty } \right)\)

Lời giải chi tiết:

\(\eqalign{
& {\log _{0,4}}\left( {x - 4} \right) + 1 \ge 0\cr& \Leftrightarrow {\log _{0,4}}\left( {x - 4} \right) \ge - 1 \cr 
& \Leftrightarrow 0 < x - 4 \le {\left( {0,4} \right)^{ - 1}} = {5 \over 2}\cr& \Leftrightarrow 4 < x \le {{13} \over 2} \cr} \)

Vậy \(S = \left( {4;6,5} \right]\).

Chọn (B).

Bài 101

Tập các số x thỏa mãn \({\left( {{2 \over 3}} \right)^{4x}} \le {\left( {{3 \over 2}} \right)^{2 - x}}\) là:

\(\left( A \right)\left( { - \infty ;{2 \over 3}} \right]\)          \(\left( B \right)\,\left[ { - {2 \over 3}; + \infty } \right)\)

\(\left( C \right)\,\left( { - \infty ;{2 \over 5}} \right]\)            \(\left( D \right)\,\left[ {{2 \over 5}; + \infty } \right)\)

Lời giải chi tiết:

\(\eqalign{
& {\left( {{2 \over 3}} \right)^{4x}} \le {\left( {{3 \over 2}} \right)^{2 - x}}\cr& \Leftrightarrow {\left( {{3 \over 2}} \right)^{ - 4x}} \le {\left( {{3 \over 2}} \right)^{2 - x}} \cr 
& \Leftrightarrow - 4x \le 2 - x  \Leftrightarrow  - 3x \le 2\cr&\Leftrightarrow x \ge - {2 \over 3} \cr} \)

Vậy \(S = \left[ { - {2 \over 3}; + \infty } \right)\).

Chọn (B).

Bài 102

Giá trị biểu thức \(3{\log _{0,1}}{10^{2,4}}\) bằng:

(A) 0,8;                        (B) 7,2;

(C) – 7,2;                       (D) 72.

Lời giải chi tiết:

\(3{\log _{0,1}}{10^{2,4}} = 3.2,4{\log _{0,1}}10 \)

\(= 7,2{\log _{\frac{1}{{10}}}}10 =  - 7,2{\log _{10}}10=  - 7,2\).

Chọn (C)

Bài 103

Giá trị biểu thức  \(0,5{\log _2}25 + {\log _2}\left( {1,6} \right)\) bằng:

(A) 1;                           (B) 2;

(C) 3;                           (D) 5.

Lời giải chi tiết:

\(\left( {0,5} \right){\log _2}25 + {\log _2}\left( {1,6} \right) \)

\( = \frac{1}{2}{\log _2}25 + {\log _2}\left( {1,6} \right) \)

\(= {\log _2}{25^{\frac{1}{2}}} + {\log _2}\left( {1,6} \right) \)

\(= {\log _2}5 + {\log _2}\left( {1,6} \right)\)

\(= {\log _2}\left( {5.1,6} \right) = {\log _2}8 = 3\)

Chọn (C)

Bài 104

Giá trị biểu thức \({{lo{g_2}240} \over {{{\log }_{3,75}}2}} - {{{{\log }_2}15} \over {{{\log }_{60}}2}} + {\log _2}1\) bằng:

(A) 4;                            (B) 3;

(C) 1;                            (D) – 8.

Lời giải chi tiết:

\(\begin{array}{l}
\frac{{{{\log }_2}240}}{{{{\log }_{3,75}}2}} - \frac{{{{\log }_2}15}}{{{{\log }_{60}}2}} + {\log _2}1\\
= {\log _2}240.{\log _2}3,75 - {\log _2}15.{\log _2}60 + 0\\
= {\log _2}\left( {{{15.2}^4}} \right).{\log _2}\frac{{15}}{4} - {\log _2}15.{\log _2}\left( {15.4} \right)\\
= \left( {{{\log }_2}15 + {{\log }_2}{2^4}} \right).\left( {{{\log }_2}15 - {{\log }_2}4} \right)\\
- {\log _2}15.\left( {{{\log }_2}15 + {{\log }_2}4} \right)\\
= \left( {{{\log }_2}15 + 4} \right).\left( {{{\log }_2}15 - 2} \right)\\
- {\log _2}15.\left( {{{\log }_2}15 + 2} \right)\\
= \log _2^215 + 2{\log _2}15 - 8\\
- \log _2^215 - 2{\log _2}15\\
= - 8
\end{array}\)

Chọn (D).

Bài 105

Tập các số x thỏa mãn \({\left( {{3 \over 5}} \right)^{2x - 1}} \le {\left( {{3 \over 5}} \right)^{2 - x}}\) là:

\(\left( A \right)\,\left[ {3; + \infty } \right)\)           \(\left( B \right)\,\left( { - \infty ;1} \right]\)

\(\left( C \right)\,\left[ {1; + \infty } \right)\)             \(\left( D \right)\,\,\left( { - \infty ; + \infty } \right)\)

Lời giải chi tiết:

BPT\(\Leftrightarrow 2x-1\ge2-x\)

\(\Leftrightarrow 3x\ge 3\Leftrightarrow x\ge1\)

Vậy \(S = \left[ {1; + \infty } \right)\).

Chọn (C).

Bài 106

Đối với hàm số \(f\left( x \right) = {e^{\cos 2x}}\), ta có:

\(\eqalign{
& \left( A \right)\,f'\left( {{\pi \over 6}} \right) = {e^{{{\sqrt 3 } \over 2}}}; \cr 
& \left( B \right)\,f'\left( {{\pi \over 6}} \right) - {e^{{{\sqrt 3 } \over 2}}}; \cr} \)   

\(\eqalign{
& \left( C \right)\,f'\left( {{\pi \over 6}} \right) = \sqrt {3e}  \cr 
& \left( D \right)\,f'\left( {{\pi \over 6}} \right) = - \sqrt {3e} \cr} \)

Lời giải chi tiết:

\(f'\left( x \right) = \left( {\cos 2x} \right)'{e^{\cos 2x}} \)

\(= \left( {2x} \right)'\left( { - \sin 2x} \right){e^{\cos 2x}}\)

\(=  - 2\sin 2x{e^{\cos 2x}}\)

\(f'\left( {{\pi  \over 6}} \right) =  - 2\sin {\pi  \over 3}.{e^{\cos {\pi  \over 3}}} \)

\(=  - \sqrt 3 .{e^{{1 \over 2}}} =  - \sqrt {3e} \)

Chọn (D).

Bài 107

Đối với hàm số \(y = \ln {1 \over {x + 1}}\), ta có:

\(\eqalign{
& \left( A \right)\,xy' + 1 = {e^y}; \cr 
& \left( B \right)\,xy' + 1 = - {e^y} ; \cr} \)

\(\eqalign{
& \left( C \right)\,xy' - 1 = {e^y} ; \cr 
& \left( D \right)\,xy' - 1 = - {e^y}. \cr} \)

Lời giải chi tiết:

\(\eqalign{
& y  = \ln 1 - \ln \left( {x + 1} \right)= - \ln \left( {x + 1} \right) \cr&\Rightarrow y'  =  - \frac{{\left( {x + 1} \right)'}}{{x + 1}}= - {1 \over {x + 1}} \cr 
& \Rightarrow xy' + 1 = x.{{ - 1} \over {x + 1}} + 1 \cr&= {{ - x} \over {x + 1}} + 1 = {1 \over {x + 1}}  \cr} \)

Lại có \({e^y} = {e^{\ln \frac{1}{{x + 1}}}} = \dfrac{1}{{x + 1}}\)

Vậy \(xy' + 1 = {e^y}\)

Chọn (A).

Bài 108

Trên hình bên, đồ thị của ba hàm số: \(y = {a^x};\,y = {b^x};\,y = {c^x}\) (a, b và c là ba số dương khác 1 cho trước) được vẽ trong cùng một mặt phẳng tọa độ. Dựa vào đồ thị và các tính chất của lũy thừa, hãy so sánh ba số a, b và c.

\(\eqalign{
& \left( A \right)\,a > b > c; \cr 
& \left( B \right)\,a > c > b; \cr} \)

\(\eqalign{
& \left( C \right)\,b > a > c ; \cr 
& \left( D \right)\,b > c > a. \cr} \)

Lời giải chi tiết:

Hàm số \(y = {a^x}\) đồng biến trên \(R\) nên \(a > 1\)

Hàm số \(y = {b^x},y = {c^x}\) nghịch biến trên \(R\) nên \(0 < b,c < 1\)

Với \(x > 0\) thì \({b^x} < {c^x} \Rightarrow b < c\)

Vậy \(b < c < a\)

Chọn (B).

Bài 109

Trên hình bên, đồ thị của ba hàm số: \(y = {\log _a}x,\,{\log _b}x,\,{\log _c}x\) (a,b và c là ba số dương khác 1 cho trước) được vẽ trong cũng một mặt phẳng tọa độ. Dựa vào đồ thị và các tính chất của logarit, hãy so sánh ba số a,b,c:

\(\eqalign{
& \left( A \right)\,a > b > c; \cr 
& \left( B \right)\,c > a > b; \cr} \)

\(\eqalign{
&  \left( C \right)\,b > a > c; \cr 
& \left( D \right)\,c > b > a. \cr} \)

Lời giải chi tiết:

Với x > 0 thì hàm số y= logcx nghịch biến nên 0 < c < 1

Với x > 0 thì hai hàm số y= logax và y=logbx đồng biến nên a > 1; b > 1.

Dựa vào đồ thị với x > 1, ta có logax > logbx nên a < b

Vậy c < a < b.

Chọn (C).

Bài 110

Phương trình \({\log _2}4x - {\log _{{x \over 2}}}2 = 3\) có bao nhiêu nghiệm?

(A) 1 nghiệm                       (B) 2 nghiệm

(C) 3 nghiệm                       (D) 4 nghiệm.

Lời giải chi tiết:

Điều kiện:  \(x > 0,\,x \ne 2\)

\(\eqalign{
& {\log _2}4x - {\log _{{x \over 2}}}2 = 3 \cr&\Leftrightarrow 2 + {\log _2}x - {1 \over {{{\log }_2}{x \over 2}}} = 3 \cr 
& \Leftrightarrow {\log _2}x - {1 \over {{{\log }_2}x - 1}} = 1 \cr&\Leftrightarrow \log _2^2x - {\log _2}x - 1 = {\log _2}x - 1 \cr 
& \Leftrightarrow \log _2^2x - 2{\log _2}x = 0 \cr 
& \Leftrightarrow \left[ \matrix{
{\log _2}x = 0 \hfill \cr 
{\log _2}x = 2 \hfill \cr} \right. \cr&\Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr 
x = 4 \hfill \cr} \right. \cr} \)

Phương trinh có 2 nghiệm.

Chọn (B).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey

Chatbot GPT

timi-livechat
Đặt câu hỏi